Int J Stomatol ›› 2021, Vol. 48 ›› Issue (4): 485-490.doi: 10.7518/gjkq.2021066
• Reviews • Previous Articles Next Articles
Li Min(),Hua Chengge,Jiang Li(
)
CLC Number:
[1] |
Bona AD, Pecho OE, Alessandretti R. Zirconia as a dental biomaterial[J]. Materials (Basel), 2015,8(8):4978-4991.
doi: 10.3390/ma8084978 |
[2] |
Guazzato M, Albakry M, Ringer SP, et al. Strength, fracture toughness and microstructure of a selection of all-ceramic materials. Part Ⅱ. Zirconia-based dental ceramics[J]. Dent Mater, 2004,20(5):449-456.
doi: 10.1016/j.dental.2003.05.002 |
[3] | Özcan M, Bernasconi M. Adhesion to zirconia used for dental restorations: a systematic review and Meta-analysis[J]. J Adhes Dent, 2015,17(1):7-26. |
[4] |
Moon JE, Kim SH, Lee JB, et al. Effects of airborne-particle abrasion protocol choice on the surface characteristics of monolithic zirconia materials and the shear bond strength of resin cement[J]. Ceram Int, 2016,42(1):1552-1562.
doi: 10.1016/j.ceramint.2015.09.104 |
[5] |
Gomes AL, Castillo-Oyagüe R, Lynch CD, et al. Influence of sandblasting granulometry and resin cement composition on microtensile bond strength to zirconia ceramic for dental prosthetic frameworks[J]. J Dent, 2013,41(1):31-41.
doi: 10.1016/j.jdent.2012.09.013 |
[6] |
Komine F, Fushiki R, Koizuka M, et al. Effect of surface treatment on bond strength between an indirect composite material and a zirconia framework[J]. J Oral Sci, 2012,54(1):39-46.
doi: 10.2334/josnusd.54.39 |
[7] | Shimoe S, Peng TY, Otaku M, et al. Influence of various airborne-particle abrasion conditions on bonding between zirconia ceramics and an indirect composite resin material[J]. J Prosthet Dent, 2019,122(5): 491.e1-491. e9. |
[8] |
Inokoshi M, Shimizu H, Nozaki K, et al. Crystallographic and morphological analysis of sandblasted highly translucent dental zirconia[J]. Dent Mater, 2018,34(3):508-518.
doi: S0109-5641(17)30620-6 pmid: 29325861 |
[9] | Ali N, Safwat A, Aboushelib M. The effect of fusion sputtering surface treatment on microshear bond strength of zirconia and MDP-containing resin cement[J]. Dent Mater, 2019, 35(6): e107-e112 |
[10] |
Aboushelib MN, Ragab H, Arnaot M. Ultrastructural analysis and long-term evaluation of composite-zirconia bond strength[J]. J Adhes Dent, 2018,20(1):33-39.
doi: 10.3290/j.jad.a39962 pmid: 29507918 |
[11] |
Wattanasirmkit K, Charasseangpaisarn T. Effect of different cleansing agents and adhesive resins on bond strength of contaminated zirconia[J]. J Prosthodont Res, 2019,63(3):271-276.
doi: S1883-1958(18)30220-2 pmid: 30704931 |
[12] |
Çakırbay Tanış M, Akay C, Şen M. Effect of selective infiltration etching on the bond strength between zirconia and resin luting agents[J]. J Esthet Restor Dent, 2019,31(3):257-262.
doi: 10.1111/jerd.12441 pmid: 30565846 |
[13] | Salem R, Naggar GE, Aboushelib M, et al. Microtensile bond strength of resin-bonded hightranslucency zirconia using different surface treatments[J]. J Adhes Dent, 2016,18(3):191-196. |
[14] |
Usumez A, Hamdemirci N, Koroglu BY, et al. Bond strength of resin cement to zirconia ceramic with different surface treatments[J]. Lasers Med Sci, 2013,28(1):259-266.
doi: 10.1007/s10103-012-1136-x |
[15] | Paranhos MP, Burnett LH Jr, Magne P. Effect of Nd: YAG Laser and CO2 laser treatment on the resin bond strength to zirconia ceramic[J]. Quintessence Int, 2011,42(1):79-89. |
[16] |
Al-Aali KA. Effect of phototherapy on shear bond strength of resin cements to zirconia ceramics: a systematic review and Meta-analysis of in-vitro studies[J]. Photodiagnosis Photodyn Ther, 2018,23:58-62.
doi: 10.1016/j.pdpdt.2018.05.006 |
[17] |
Tokar E, Polat S, Ozturk C. Repair bond strength of composite to Er, Cr: YSGG laser irradiated zirconia and porcelain surfaces[J]. Biomed J, 2019,42(3):193-199.
doi: S2319-4170(17)30380-3 pmid: 31466713 |
[18] |
Turp V, Akgungor G, Sen D, et al. Evaluation of surface topography of zirconia ceramic after Er: YAG laser etching[J]. Photomed Laser Surg, 2014,32(10):533-539.
doi: 10.1089/pho.2014.3730 |
[19] |
Schelle F, Polz S, Haloui H, et al. Ultrashort pulsed laser (USPL) application in dentistry: basic investigations of ablation rates and thresholds on oral hard tissue and restorative materials[J]. Lasers Med Sci, 2014,29(6):1775-1783.
doi: 10.1007/s10103-013-1315-4 |
[20] |
Vicente Prieto M, Gomes ALC, Montero Martín J, et al. The effect of femtosecond laser treatment on the effectiveness of resin-zirconia adhesive: an in vitro study[J]. J Lasers Med Sci, 2016,7(4):214-219.
doi: 10.15171/jlms.2016.38 pmid: 28491255 |
[21] |
Abu Ruja M, De Souza GM, Finer Y. Ultrashort-pulse laser as a surface treatment for bonding between zirconia and resin cement[J]. Dent Mater, 2019,35(11):1545-1556.
doi: 10.1016/j.dental.2019.07.009 |
[22] |
Chen Y, Lu ZC, Qian MK, et al. Chemical affinity of 10-methacryloyloxydecyl dihydrogen phosphate to dental zirconia: effects of molecular structure and solvents[J]. Dent Mater, 2017,33(12):e415-e427.
doi: 10.1016/j.dental.2017.09.013 |
[23] |
Lima RBW, Barreto SC, Alfrisany NM, et al. Effect of silane and MDP-based primers on physicochemical properties of zirconia and its bond strength to resin cementp[J]. Dent Mater, 2019,35(11):1557-1567.
doi: 10.1016/j.dental.2019.07.008 |
[24] |
Tanış MÇ, Akçaboy C. Effects of different surface treatment methods and MDP monomer on resin cementation of zirconia ceramics an in vitro study[J]. J Lasers Med Sci, 2015,6(4):174-181.
doi: 10.15171/jlms.2015.15 |
[25] |
Jiang T, Chen C, Lv P. Selective infiltrated etching to surface treat zirconia using a modified glass agent[J]. J Adhes Dent, 2014,16(6):553-557.
doi: 10.3290/j.jad.a33195 pmid: 25516878 |
[26] |
Liu MY, Zhou JF, Yang Y, et al. Surface modification of zirconia with polydopamine to enhance fibroblast response and decrease bacterial activity in vitro: a potential technique for soft tissue engineering applications[J]. Colloids Surf B Biointerfaces, 2015,136:74-83.
doi: 10.1016/j.colsurfb.2015.06.047 |
[27] |
Lee H, Dellatore SM, Miller WM, et al. Mussel-inspired surface chemistry for multifunctional coatings[J]. Science, 2007,318(5849):426-430.
doi: 10.1126/science.1147241 |
[28] | 肖楠, 侯玉泽, 侯玉一. 聚多巴胺对氧化锆陶瓷粘接强度影响的研究[J]. 北京口腔医学, 2018,26(6):323-326. |
Xiao N, Hou YZ, Hou YY. Effect of polydopamine on the shear bond strength of zirconia ceramics[J]. Beijing J Stomatol, 2018,26(6):323-326. | |
[29] |
Teng JL, Wang H, Liao YM, et al. Evaluation of a conditioning method to improve core-veneer bond strength of zirconia restorations[J]. J Prosthet Dent, 2012,107(6):380-387.
doi: 10.1016/S0022-3913(12)60095-X |
[30] |
Farhan FA, Sulaiman E, Kutty MG. Effect of new zirconia surface coatings on the surface properties and bonding strength of veneering zirconia substrate[J]. Surf Coat Technol, 2018,333:247-258.
doi: 10.1016/j.surfcoat.2017.10.030 |
[31] |
Murakami T, Takemoto S, Nishiyama N, et al. Zirconia surface modification by a novel zirconia bonding system and its adhesion mechanism[J]. Dent Mater, 2017,33(12):1371-1380.
doi: 10.1016/j.dental.2017.09.001 |
[32] |
Han GJ, Kim JH, Cho BH, et al. Promotion of resin bonding to dental zirconia ceramic using plasma deposition of tetramethylsilane and benzene[J]. Eur J Oral Sci, 2017,125(1):81-87.
doi: 10.1111/eos.2017.125.issue-1 |
[33] | Yoshida K, Sawase T. Influence of saliva contamination on resin bonding to zirconia[J]. Dent Mater, 2017,33:e84-e85. |
[34] |
Valverde GB, Coelho PG, Janal MN, et al. Surface characterisation and bonding of Y-TZP following non-thermal plasma treatment[J]. J Dent, 2013,41(1):51-59.
doi: 10.1016/j.jdent.2012.10.002 |
[35] |
Bitencourt SB, Dos Santos DM, da Silva EVF, et al. Characterisation of a new plasma-enhanced film to improve shear bond strength between zirconia and veneering ceramic[J]. Mater Sci Eng C Mater Biol Appl, 2018,92:196-205.
doi: S0928-4931(17)33908-5 pmid: 30184742 |
[36] |
Valverde GB, Coelho PG, Janal MN, et al. Surface characterisation and bonding of Y-TZP following non-thermal plasma treatment[J]. J Dent, 2013,41(1):51-59.
doi: 10.1016/j.jdent.2012.10.002 |
[37] | Piest C, Wille S, Strunskus T, et al. Efficacy of plasma treatment for decontaminating zirconia[J]. J Adhes Dent, 2018,20(4):289-297. |
[38] | 詹凌璐, 张玉玮, 郑苗, 等. 大气压冷等离子体处理提高氧化锆粘接性能[J]. 口腔颌面修复学杂志, 2019,20(1):3-8. |
Zhan LL, Zhang YW, Zheng M, et al. Effects of different atmospheric pressure cold gas plasmas on bonding of zirconia[J]. Chin J Prosthodont, 2019,20(1):3-8. | |
[39] |
Chen MS, Zhang Y, Sky Driver M, et al. Surface modification of several dental substrates by non-thermal, atmospheric plasma brush[J]. Dent Mater, 2013,29(8):871-880.
doi: 10.1016/j.dental.2013.05.002 |
[40] | Güers P, Wille S, Strunskus T, et al. Durability of resin bonding to zirconia ceramic after contamination and the use of various cleaning methods[J]. Dent M-ater, 2019,35(10):1388-1396. |
[1] | Chang Xinnan,Liu Lei. Applications and research progress of biodegradable magnesium-based materials in craniomaxillofacial surgery [J]. Int J Stomatol, 2024, 51(1): 107-115. |
[2] | Sun Xu,Deng Zhennan,Wen Cai,Zhao Ying. Implant surface micromorphological changes after Er: YAG laser irradiation observed under scanning electron microscope [J]. Int J Stomatol, 2023, 50(6): 669-673. |
[3] | Huang Yuanhong,Peng Xian,Zhou Xuedong.. Progress in research into the effect of Rhizoma Drynariae on the treatment of bone-related diseases in the oral cavity [J]. Int J Stomatol, 2023, 50(6): 679-685. |
[4] | Wang Huan,Liu Yang,Qi Mengchun,Li Jingyi,Liu Mengnan,Sun Hong. Research progress on the preparation of titanium-based implant surface coatings by micro-arc oxidation [J]. Int J Stomatol, 2020, 47(4): 439-444. |
[5] | Mengqi Liu,Kuo Gai,Li Jiang. Research progress on oral implant materials with antimicrobial properties [J]. Inter J Stomatol, 2018, 45(5): 516-521. |
[6] | Xueyang Deng,Lanlan Pan,Ting Hu,Wenhua Li,Xuerong. Xiang. Preparation of graphene oxide coatings on titanium alloy surface [J]. Inter J Stomatol, 2018, 45(5): 539-545. |
[7] | Yao Chenmin, Zhou Liqun, Huang Cui.. Selection of tooth-colored restorative material for worn anterior teeth [J]. Inter J Stomatol, 2017, 44(3): 363-367. |
[8] | Zhao Fujian, Wang Zhenshi, Shi Lianshui. Research status of antibacterial coating on orthodontic brackets [J]. Inter J Stomatol, 2016, 43(2): 239-243. |
[9] | Zhu Xiaojing, Wang Yan. Research progress on co-deposition of calcium phosphate with bioactive molecules on titanium implant surface [J]. Inter J Stomatol, 2014, 41(5): 617-620. |
[10] | Weng Jinlong1, Chen Xiaochi2.. Function of microorganisms in tongue coating in oral malodor [J]. Inter J Stomatol, 2013, 40(5): 625-628. |
[11] | Lin Yihua1, Song Xiaomeng2, Zhang Wei3. Study of bonding property among 3 kinds of resin-reinforced glass ionomer and zirconia ceramics [J]. Inter J Stomatol, 2013, 40(3): 305-308. |
[12] | Si Jiawen1, Wan Haoyuan1, Hu Qifan2, Sun Huiqiang1.. Microstructure properties and cytotoxicity of titania and zirconia coating on titanium surface [J]. Inter J Stomatol, 2011, 38(5): 531-534. |
[13] | ZHU Ye1, XIE Hai-feng2, ZHANG Fei-min2.. Effects of nano-silica coating on fracture strength of glass infiltrated alumina ceramic [J]. Inter J Stomatol, 2011, 38(3): 257-260. |
[14] | HE Feng, XIE Hai -feng, ZHU Ye, ZHANG Fei-min, SUN Li-jun.. Shear bond strength of two self adhesive composite resin cements to dentin [J]. Inter J Stomatol, 2010, 37(01): 26-29. |
[15] | CHEN Xiao-chun, CHEN Xin-mei. Research progress on manufacturing factors of the fracture about nickel-titanium [J]. Inter J Stomatol, 2009, 36(3): 358-360. |