Int J Stomatol ›› 2020, Vol. 47 ›› Issue (1): 95-101.doi: 10.7518/gjkq.2020009

• Reviews • Previous Articles     Next Articles

Effects of bone microenvironment cells on tumor bone metastasis

Zeng Kan,Li Xin,Wang Chenglin,Yang Jing,Ye Ling()   

  1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2019-05-21 Revised:2019-09-21 Online:2020-01-01 Published:2020-01-01
  • Contact: Ling Ye E-mail:yeling@scu.edu.cn
  • Supported by:
    This study was supported by National Natural Science Foundation of China(81771065)

Abstract:

Bone metastasis is an important part of tumor metastasis and includes colonization, dormancy, and proliferation. However, tumor cells undergo a long period of dormancy after colonization. Several cells, including osteoblast, osteoclast, marrow stromal cell, immune cell, and vascular endothelial cell, live in the bone microenvironment and contribute to the progress of bone metastasis. In addition to self-regulation, tumor cells interact with various cells in the bone microenvironment during metastasis. This study aims to analyze the effect of bone microenvironment cells on tumor bone metastasis and further explore such process.

Key words: bone metastasis, bone microenvironment, dormancy, colonization, proliferation

CLC Number: 

  • Q279

TrendMD: 
[1] Cetin K, Christiansen CF, Sværke C , et al. Survival in patients with breast cancer with bone metastasis: a Danish population-based cohort study on the pro-gnostic impact of initial stage of disease at breast cancer diagnosis and length of the bone metastasis-free interval[J]. BMJ Open, 2015,5(4):e007702.
[2] Uhr JW, Pantel K . Controversies in clinical cancer dormancy[J]. Proc Natl Acad Sci USA, 2011,108(30):12396-12400.
[3] 孟琳, 王丹丹, 唐琪 , 等. 肿瘤休眠及其相关机制研究进展[J]. 吉林大学学报(医学版), 2016,42(5):1030-1033.
Meng L, Wang DD, Tang Q , et al. Advanced research on tumor dormancy and its correlative mechanism[J]. J Jilin Univ (Med Ed), 2016,42(5):1030-1033.
[4] Croucher PI ,McDonald MM,Martin TJ. Bone metastasis: the importance of the neighbourhood[J]. Nat Rev Cancer, 2016,16(6):373-386.
[5] Quayle L, Ottewell PD, Holen I . Bone metastasis: molecular mechanisms implicated in tumour cell dormancy in breast and prostate cancer[J]. Curr Cancer Drug Targets, 2015,15(6):469-480.
[6] Monteiro AC, Leal AC, Gonçalves-Silva T , et al. T cells induce pre-metastatic osteolytic disease and help bone metastases establishment in a mouse mo-del of metastatic breast cancer[J]. PLoS One, 2013,8(7):e68171.
[7] Ghajar CM, Peinado H, Mori H , et al. The perivas-cular Niche regulates breast tumour dormancy[J]. Nat Cell Biol, 2013,15(7):807-817.
[8] Sosa MS, Bragado P, Aguirre-Ghiso JA . Mechanisms of disseminated cancer cell dormancy: an awakening field[J]. Nat Rev Cancer, 2014,14(9):611-622.
[9] Aguirre Ghiso JA . Inhibition of FAK signaling ac-tivated by urokinase receptor induces dormancy in human carcinoma cells in vivo[J]. Oncogene, 2002,21(16):2513-2524.
[10] Aguirre Ghiso JA, Kovalski K, Ossowski L . Tumor dormancy induced by downregulation of urokinase receptor in human carcinoma involves integrin and MAPK signaling[J]. J Cell Biol, 1999,147(1):89-104.
[11] Liu D, Aguirre Ghiso J, Estrada Y , et al. EGFR is a transducer of the urokinase receptor initiated signal that is required for in vivo growth of a human car-cinoma[J]. Cancer Cell, 2002,1(5):445-457.
[12] Aguirre-Ghiso JA, Ossowski L, Rosenbaum SK . Green fluorescent protein tagging of extracellular signal-regulated kinase and p38 pathways reveals novel dynamics of pathway activation during pri-mary and metastatic growth[J]. Cancer Res, 2004,64(20):7336-7345.
[13] Bartkowiak K, Effenberger KE, Harder S , et al. Discovery of a novel unfolded protein response phenotype of cancer stem/progenitor cells from the bone marrow of breast cancer patients[J]. J Proteome Res, 2010,9(6):3158-3168.
[14] Hosokawa N, Hara T, Kaizuka T , et al. Nutrient-dependent MTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy[J]. Mol Biol Cell, 2009,20(7):1981-1991.
[15] 张玉梅, 冯凡, 林方方 , 等. 自噬相关基因ATG5在肿瘤发生发展及治疗中的作用[J]. 中国肿瘤, 2018,27(10):774-778.
Zhang YM, Feng F, Lin FF , et al. Roles of auto-phagy-related gene 5 (ATG5) in tumor development, treatment and prognosis[J]. China Cancer, 2018,27(10):774-778.
[16] Malladi S, Macalinao DG, Jin X , et al. Metastatic latency and immune evasion through autocrine inhibition of WNT[J]. Cell, 2016,165(1):45-60.
[17] Zhuang XQ, Zhang H, Li XY , et al. Differential effects on lung and bone metastasis of breast cancer by Wnt signalling inhibitor DKK1[J]. Nat Cell Biol, 2017,19(10):1274-1285.
[18] Wang H, Yu CJ, Gao X , et al. The osteogenic Niche promotes early-stage bone colonization of disse-minated breast cancer cells[J]. Cancer Cell, 2015,27(2):193-210.
[19] Ren GW, Esposito M, Kang YB . Bone metastasis and the metastatic Niche[J]. J Mol Med, 2015,93(11):1203-1212.
[20] Buenrostro D, Park SI, Sterling JA . Dissecting the role of bone marrow stromal cells on bone metas-tases[J]. Biomed Res Int, 2014,2014:875305.
[21] Sun YN, Mao XY, Fan CF , et al. CXCL12-CXCR4 axis promotes the natural selection of breast cancer cell metastasis[J]. Tumor Biol, 2014,35(8):7765-7773.
[22] Luker KE, Lewin SA, Mihalko LA , et al. Scavenging of CXCL12 by CXCR7 promotes tumor growth and metastasis of CXCR4-positive breast cancer cells[J]. Oncogene, 2012,31(45):4750-4758.
[23] Boudot A, Kerdivel G, Habauzit D , et al. Differential estrogen-regulation of CXCL12 chemokine receptors, CXCR4 and CXCR7, contributes to the growth effect of estrogens in breast cancer cells[J]. PLoS One, 2011,6(6):e20898.
[24] Wang N, Docherty FE, Brown HK , et al. Prostate cancer cells preferentially home to osteoblast-rich areas in the early stages of bone metastasis: evidence from in vivo models[J]. J Bone Miner Res, 2014,29(12):2688-2696.
[25] Grudowska A, Czaplińska D, Polom W , et al. Tetras-panin CD151 mediates communication between PC3 prostate cancer cells and osteoblasts[J]. Acta Biochim Pol, 2017,64(1):135-141.
[26] Wang H, Tian L, Liu J , et al.The osteogenic Niche is a calcium reservoir of bone micrometastases and confers unexpected therapeutic vulnerability[J].Cancer Cell, 2018, 34(5):823- 839.e7.
[27] Weilbaecher KN, Guise TA , McCauley LK. Cancer to bone: a fatal attraction[J]. Nat Rev Cancer, 2011,11(6):411-425.
[28] Hirshberg A, Berger R, Allon I , et al. Metastatic tumors to the jaws and mouth[J]. Head Neck Pathol, 2014,8(4):463-474.
[29] Zheng Y, Chow SO, Boernert K , et al. Direct cross-talk between cancer and osteoblast lineage cells fuels metastatic growth in bone via auto-amplification of IL-6 and RANKL signaling pathways[J]. J Bone Miner Res, 2014,29(9):1938-1949.
[30] Luo XM, Fu YJ, Loza AJ , et al. Stromal-initiated changes in the bone promote metastatic niche deve-lopment[J]. Cell Rep, 2016,14(1):82-92.
[31] Esposito M, Guise T, Kang YB . The biology of bone metastasis[J]. Cold Spring Harb Perspect Med, 2018,8(6):a031252.
[32] Yin JJ, Selander K, Chirgwin JM , et al. TGF-beta signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development[J]. J Clin Invest, 1999,103(2):197-206.
[33] Lu X, Mu E, Wei Y , et al. VCAM-1 promotes osteolytic expansion of indolent bone micrometastasis of breast cancer by engaging α4β1-positive osteoclast pro-genitors[J]. Cancer Cell, 2011,20(6):701-714.
[34] Sethi N, Dai XD, Winter CG , et al. Tumor-derived JAGGED1 promotes osteolytic bone metastasis of breast cancer by engaging notch signaling in bone cells[J]. Cancer Cell, 2011,19(2):192-205.
[35] Lynch CC, Hikosaka A, Acuff HB , et al. MMP-7 promotes prostate cancer-induced osteolysis via the solubilization of RANKL[J]. Cancer Cell, 2005,7(5):485-496.
[36] Lu X, Wang QQ, Hu GH , et al. ADAMTS1 and MMP1 proteolytically engage EGF-like ligands in an osteolytic signaling cascade for bone metastasis[J]. Genes Dev, 2009,23(16):1882-1894.
[37] Kelly T, Suva LJ, Huang Y , et al. Expression of heparanase by primary breast tumors promotes bone resorption in the absence of detectable bone metas-tases[J]. Cancer Res, 2005,65(13):5778-5784.
[38] Cher ML, Biliran HR Jr, Bhagat S , et al. Maspin expression inhibits osteolysis, tumor growth, and angiogenesis in a model of prostate cancer bone metastasis[J]. Proc Natl Acad Sci U S A, 2003,100(13):7847-7852.
[39] Dormady SP, Zhang XM, Basch RS . Hematopoietic progenitor cells grow on 3T3 fibroblast monolayers that overexpress growth arrest-specific gene-6 (GAS6)[J]. Proc Natl Acad Sci U S A, 2000,97(22):12260-12265.
[40] Jung Y, Shiozawa Y, Wang JC , et al. Prevalence of prostate cancer metastases after intravenous inocula-tion provides clues into the molecular basis of dor-mancy in the bone marrow microenvironment[J]. Neoplasia, 2012,14(5):429-439.
[41] Shiozawa Y, Pedersen EA, Patel LR , et al. GAS6/AXL Axis regulates prostate cancer invasion, proli-feration, and survival in the bone marrow niche[J]. Neoplasia, 2010,12(2):116-127.
[42] Kobayashi A, Okuda H, Xing F , et al. Bone morpho-genetic protein 7 in dormancy and metastasis of prostate cancer stem-like cells in bone[J]. J Exp Med, 2011,208(13):2641-2655.
[43] Kim JK, Jung Y, Wang JC , et al. TBK1 regulates prostate cancer dormancy through mTOR inhibition[J]. Neoplasia, 2013,15(9):1064-1074.
[44] Feuerer M, Rocha M, Bai L , et al. Enrichment of memory T cells and other profound immunological changes in the bone marrow from untreated breast cancer patients[J]. Int J Cancer, 2001,92(1):96-105.
[45] Sawant A, Hensel JA, Chanda D , et al. Depletion of plasmacytoid dendritic cells inhibits tumor growth and prevents bone metastasis of breast cancer cells[J]. J Immunol, 2012,189(9):4258-4265.
[46] Wu AC, He YW, Broomfield A , et al. CD169+ ma-crophages mediate pathological formation of woven bone in skeletal lesions of prostate cancer[J]. J Pathol, 2016,239(2):218-230.
[47] Kianercy A, Pienta KJ . Positive feedback loops be-tween inflammatory, bone and cancer cells during metastatic niche construction[J]. Adv Exp Med Biol, 2016,936:137-148.
[48] Mulcrone PL, Campbell JP, Clément-Demange L , et al. Skeletal colonization by breast cancer cells is stimulated by an osteoblast and β2AR-dependent neo-angiogenic switch[J]. J Bone Miner Res, 2017,32(7):1442-1454.
[1] Zhou Jinkuo,Zhang Jinhong,Shi Xiaojing,Liu Guangshun,Jiang Lei,Liu Qianfeng. Influences of long noncoding RNA small nucleolar RNA host gene 22 on the cell proliferation, invasion and migration of oral squamous carcinoma cells by regulating microRNA-27b-3p [J]. Int J Stomatol, 2024, 51(1): 52-59.
[2] Xiong Menglin,Wu Long,Ma Li,Zhao Jin. Role of transforming growth factor-β2 in promoting the proliferation and differentiation of dental pulp stem cells [J]. Int J Stomatol, 2021, 48(6): 635-639.
[3] Liu Juan,Chen Bin,Yan Fuhua. Effects of platelet-rich plasma and concentrated growth factor on the proliferation and osteogenic differentiation of human periodontal cells [J]. Int J Stomatol, 2021, 48(5): 520-527.
[4] Fu Shijin,Zeng Kan,Li Xin,Yang Jing,Wang Chenglin,Ye Ling. Preliminary study on osteoprotegerin/receptor activator of nuclear factor-κB ligand expression in mandible and femur on site selectivity of bone metastasis of lung cancer cells [J]. Int J Stomatol, 2020, 47(5): 538-546.
[5] Li Huili,Fang Changyun,Su Zheng. Effects of arecoline on proliferation and migration of human buccal mucosal fibroblasts in vitro [J]. Int J Stomatol, 2020, 47(1): 32-36.
[6] Mei Hongxiang,Zhang Yidan,Zhang Chenghao,Liu Enyan,Chen Hao,Zhao Zhihe,Liao Wen. Effect of epigallocatechin-3-gallate on stem cell proliferation and osteogenic differentiation [J]. Int J Stomatol, 2019, 46(4): 431-436.
[7] Yuxuan Yang,Haixia Zhang,Shuang Wang. Biological function of amelogenin during periodontal regeneration [J]. Inter J Stomatol, 2019, 46(2): 191-196.
[8] Yuanyuan Li,Bin Cheng,Yun Wang. Effects of long non-coding RNA lnc-p26090 on the glycolysis and proliferation in oral squamous cell carcinoma [J]. Inter J Stomatol, 2018, 45(6): 628-634.
[9] Zhiqiang Wang,Yali Liu,Lijuan Ma,Lan Yang,Ruoyu Wang,Shuting Gao. Effects of salidroside on proliferation, apoptosis, cycle and migration of human tongue cancer CAL-27 cells [J]. Inter J Stomatol, 2018, 45(6): 678-685.
[10] Zhan Yeming, Zhang Mingzhu. Research progress on the relevance between drug-induced gingival overgrowth and cell proliferation and apoptosis [J]. Inter J Stomatol, 2018, 45(2): 199-203.
[11] Wang Qi, Chen Xiyan, Wen Yong.. Research progress on the crosstalk between Hippo/YAP signaling pathway and cell proliferation-related signaling pathways [J]. Inter J Stomatol, 2017, 44(5): 614-618.
[12] Du Qin1,2, Zou Jing1, Li Yuqing1, Li Mingyun1, Zhou Xuedong1. The colonization of oral bacteria in healthy children [J]. Inter J Stomatol, 2016, 43(1): 57-.
[13] Cheng Qun, Yang Minghua, Chen Bin, Liu Juan,Yan Fuhua. Effect of Er:YAG laser irradiation on the cell proliferation and migration of human periodontal ligament cells [J]. Inter J Stomatol, 2015, 42(2): 135-139.
[14] He Kun1, Cheng Xiangrong2, Zhang Ximu3. Influence of enamel matrix protein on attachment and proliferation ability of dental follicle cells and periodontal ligament cells cultured on titanium [J]. Inter J Stomatol, 2014, 41(5): 536-540.
[15] Ji Qiuxia, Yuan Changqing, Song Wenbin, Wu Hong.. Effects of quaternized chitosan on the cell proliferation and cell cycle of human periodontal ligament cells [J]. Inter J Stomatol, 2013, 40(5): 588-591.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 458 -460 .
[8] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 452 -454 .
[9] . [J]. Inter J Stomatol, 2008, 35(S1): .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .