Inter J Stomatol ›› 2018, Vol. 45 ›› Issue (1): 112-118.doi: 10.7518/gjkq.2018.01.022
• Original Articles • Previous Articles Next Articles
Zeng Tingyan, Huang Shenggao
CLC Number:
[1]韩耀辉, 徐庚池, 牟兰, 等. 三维有限元分析在口腔正畸领域的研究进展[J]. 现代口腔医学杂志, 2015, 29(3):179-182. Han YH, Xu GC, Mou L, et al. Research progress in the field of orthodontics three-dimensional finite element analysis[J]. J Modern Stomatol, 2015, 29(3): 179-182. [2]Zaparolli D, Peixoto RF, Pupim D, et al. Photoelastic analysis of mandibular full-arch implant-supported fixed dentures made with different bar materials and manufacturing techniques[J]. Mater Sci Eng C Mater Biol Appl, 2017, 81:144-147. [3]Brozović J, Demoli N, Farkaš N, et al. Properties of axially loaded implant-abutment assemblies using di-gital holographic interferometry analysis[J]. Dent Mater, 2014, 30(3):e17-e27. [4]Begonia M, Dallas M, Johnson ML, et al. Compa-rison of strain measurement in the mouse forearm using subject-specific finite element models, strain gaging, and digital image correlation[J]. Biomech Model Mechanobiol, 2017, 16(4):1243-1253. [5]Chatzigianni A, Keilig L, Duschner H, et al. Com-parative analysis of numerical and experimental data of orthodontic mini-implants[J]. Eur J Orthod, 2011, 33(5):468-475. [6]Thresher RW, Saito GE. The stress analysis of human teeth[J]. J Biomech, 1973, 6(5):443-449. [7]Takahashi N, Kitagami T, Komori T. Behaviour of teeth under various loading conditions with finite element method[J]. J Oral Rehabil, 1980, 7(6):453- 461. [8]Kanomi R. Mini-implant for orthodontic anchorage [J]. J Clin Orthod, 1997, 31(11):763-767. [9]El-Beialy AR, Abou-El-Ezz AM, Attia KH, et al. Loss of anchorage of miniscrews: a 3-dimensional assessment[J]. Am J Orthod Dentofacial Orthop, 2009, 136(5):700-707. [10]Ammar HH, Ngan P, Crout RJ, et al. Three-dimen-sional modeling and finite element analysis in treat-ment planning for orthodontic tooth movement[J]. Am J Orthod Dentofacial Orthop, 2011, 139(1):e59- e71. [11]Gracco A, Cirignaco A, Cozzani M, et al. Numerical/experimental analysis of the stress field around mi-niscrews for orthodontic anchorage[J]. Eur J Orthod, 2009, 31(1):12-20. [12]Schileo E, Taddei F, Cristofolini L, et al. Subject-specific finite element models implementing a maxi-mum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro [J]. J Biomech, 2008, 41(2):356-367. [13]Albogha MH, Kitahara T, Todo M, et al. Maximum principal strain as a criterion for prediction of ortho-dontic mini-implants failure in subject-specific finite element models[J]. Angle Orthod, 2016, 86(1):24- 31. [14]Rismanchian M, Birang R, Shahmoradi M, et al. Developing a new dental implant design and com-paring its biomechanical features with four designs [J]. Dent Res J (Isfahan), 2010, 7(2):70-75. [15]Huang HL, Hsu JT, Fuh LJ, et al. Bone stress and interfacial sliding analysis of implant designs on an immediately loaded maxillary implant: a non-linear finite element study[J]. J Dent, 2008, 36(6):409-417. [16]Ajami S, Mina A, Nabavizadeh SA. Stress distri-butions of a bracket type orthodontic miniscrew and the surrounding bone under moment loadings: Three-dimensional finite element analysis[J]. J Ortho-dont Sci, 2016, 5(2):64-69. [17]单丽华, 董福生, 宫伟伟, 等. 微型种植体长度对骨界面应力分布的影响[J]. 华西口腔医学杂志, 2011, 29(1):27-30. Shan LH, Dong FS, Gong WW, et al. The effect of mini-implant lengths on stress distributions in peri-implant surface[J]. West Chin J Stomatol, 2011, 29 (1):27-30. [18]房伟. 正畸微种植体优化设计的三维有限元分析[D]. 西安: 第四军医大学, 2009. Fang W. Three-dimensional finite element analysis of biomechanical optimum design of orthodontic mini-implant[D]. Xi’an: Forth Military Medical Uni-versity, 2009. [19]Lu Y, Chang S, Ye J, et al. Analysis on the stress of the bone surrounding mini-implant with different diameters and lengths under torque[J]. Biomed Mater Eng, 2015, 26(Suppl 1):S541-S545. [20]Liu TC, Chang CH, Wong TY, et al. Finite element analysis of miniscrew implants used for orthodontic anchorage[J]. Am J Orthod Dentofacial Orthop, 2012, 141(4):468-476. [21]Chang PK, Chen YC, Huang CC, et al. Distribution of micromotion in implants and alveolar bone with different thread profiles in immediate loading: a finite element study[J]. Int J Oral Maxillofac Im-plants, 2012, 27(6):e96-101. [22]Ao J, Li T, Liu Y, et al. Optimal design of thread height and width on an immediately loaded cylinder implant: a finite element analysis[J]. Comput Biol Med, 2010, 40(8):681-686. [23][23]王维丽, 马洁, 李鑫, 等. 反支撑形螺纹种植体即刻负载时应力分布的三维有限元分析[J]. 口腔颌面修复学杂志, 2016, 17(4):211-215. Wang WL, Ma J, Li X, et al. Analysis of the biome-chanics stress distribution of the reverse buttress thread implant under immediate loading: a three dimensional finite element study[J]. Chin J Prosthod, 2016, 17(4):211-215. [24][24]Atieh MA, Shahmiri RA. Evaluation of optimal taper of immediately loaded wide-diameter implants: a finite element analysis[J]. J Oral Implantol, 2013, 39 (2):123-132. [25]Fattahi H, Ajami S, Rafsanjani AN. The effects of different miniscrew thread designs and force direc-tions on stress distribution by 3-dimensional finite element analysis[J]. J Dent (Shiraz), 2015, 16(4): 341-348. [26]Alrbata RH, Yu W, Kyung HM. Biomechanical effectiveness of cortical bone thickness on ortho-dontic microimplant stability: an evaluation based on the load share between cortical and cancellous bone [J]. Am J Orthod Dentofacial Orthop, 2014, 146(2): 175-182. [27]Lin TS, Tsai FD, Chen CY, et al. Factorial analysis of variables affecting bone stress adjacent to the or-thodontic anchorage mini-implant with finite element analysis[J]. Am J Orthod Dentofacial Orthop, 2013, 143(2):182-189. [28]Albogha MH, Kitahara T, Todo M, et al. Predis-posing factors for orthodontic mini-implant failure defined by bone strains in patient-specific finite element models[J]. Ann Biomed Eng, 2016, 44(10): 2948-2956. [29]Lin CL, Wang JC, Ramp LC, et al. Biomechanical response of implant systems placed in the maxillary posterior region under various conditions of angula-tion, bone density, and loading[J]. Int J Oral Maxillo-fac Implants, 2008, 23(1):57-64. [30]Motoyoshi M, Inaba M, Ono A, et al. The effect of cortical bone thickness on the stability of orthodontic mini-implants and on the stress distribution in sur-rounding bone[J]. Int J Oral Maxillofac Surg, 2009, 38(1):13-18. [31]Stahl E, Keilig L, Abdelgader I, et al. Numerical analyses of biomechanical behavior of various ortho-dontic anchorage implants[J]. J Orofac Orthop, 2009, 70(2):115-127. [32]Suzuki A, Masuda T, Takahashi I, et al. Changes in stress distribution of orthodontic miniscrews and sur-rounding bone evaluated by 3-dimensional finite element analysis[J]. Am J Orthod Dentofacial Orthop, 2011, 140(6):e273-e280. [33]Poorsattar Bejeh Mir A, Ravadgar M, Poorsattar Bejeh Mir M. Optimized orthodontic palatal mini-screw implant insertion angulation: a finite element analysis[J]. Int J Oral Maxillofac Implants, 2015, 30 (1):e1-e9. [34]Kuroda S, Inoue M, Kyung HM, et al. Stress distri-bution in obliquely inserted orthodontic miniscrews evaluated by three-dimensional finite-element ana-lysis[J]. Int J Oral Maxillofac Implants, 2017, 32 (2):344-349. [35]Choi SH, Kim SJ, Lee KJ, et al. Stress distributions in peri-miniscrew areas from cylindrical and tapered miniscrews inserted at different angles[J]. Korean J Orthod, 2016, 46(4):189-198. [36]张扬, 张丹, 冯翠娟. 微小种植体正畸支抗生物力学的三维有限元分析[J]. 上海口腔医学, 2005, 14 (3):281-283. Zhang Y, Zhang D, Feng CJ. A three-dimensional finite element analysis for the biomechanical charac-teristics of orthodontic anchorage micro-implant[J].Shanghai J Stomatol, 2005, 14(3):281-283. [37]Perillo L, Jamilian A, Shafieyoon A, et al. Finite element analysis of miniscrew placement in mandi-bular alveolar bone with varied angulations[J]. Eur J Orthod, 2015, 37(1):56-59. [38]Lee J, Kim JY, Choi YJ, et al. Effects of placement angle and direction of orthopedic force application on the stability of orthodontic miniscrews[J]. Angle Orthod, 2013, 83(4):667-673. [39]Woodall N, Tadepalli SC, Qian F, et al. Effect of miniscrew angulation on anchorage resistance[J]. Am J Orthod Dentofacial Orthop, 2011, 139(2):e147- e152. [40]Zhao L, Xu Z, Wei X, et al. Effect of placement angle on the stability of loaded titanium microscrews: a microcomputed tomographic and biomechanical analysis[J]. Am J Orthod Dentofacial Orthop, 2011, 139(5):628-635. [41]Miyamoto I, Tsuboi Y, Wada E, et al. Influence of cortical bone thickness and implant length on im-plant stability at the time of surgery—clinical, pro-spective, biomechanical, and imaging study[J]. Bone, 2005, 37(6):776-780. [42]Frost HM. A brief review for orthopedic surgeons: fatigue damage (microdamage) in bone (its deter-minants and clinical implications)[J]. J Orthop Sci, 1998, 3(5):272-281. [43]Motoyoshi M, Ueno S, Okazaki K, et al. Bone stress for a mini-implant close to the roots of adjacent teeth—3D finite element analysis[J]. Int J Oral Ma-xillofac Surg, 2009, 38(4):363-368. [44]Shan LH, Guo N, Zhou GJ, et al. Finite element analysis of bone stress for miniscrew implant pro-ximal to root under occlusal force and implant loa-ding[J]. J Craniofac Surg, 2015, 26(7):2072-2076. [45]Singh S, Mogra S, Shetty VS, et al. Three-dimensional finite element analysis of strength, stability, and stress distribution in orthodontic anchorage: a conical, self-drilling miniscrew implant system[J]. Am J Orthod Dentofacial Orthop, 2012, 141(3):327-336. [46]Tepedino M, Masedu F, Chimenti C. Comparative evaluation of insertion torque and mechanical stabi-lity for self-tapping and self-drilling orthodontic miniscrews—an in vitro study[J]. Head Face Med, 2017, 13(1):10. [47]Melo AC, Andrighetto AR, Hirt SD, et al. Risk factors associated with the failure of miniscrews—a ten-year cross sectional study[J]. Braz Oral Res, 2016, 30(1):e124. |