Inter J Stomatol ›› 2018, Vol. 45 ›› Issue (1): 112-118.doi: 10.7518/gjkq.2018.01.022

• Original Articles • Previous Articles     Next Articles

A three-dimensional finite element analysis for stability of mini-implant anchorage

Zeng Tingyan, Huang Shenggao   

  1. Dept. of Orthodontics, Stomatological Center, The Second Xiangya Hospital of Central South University, Changsha 410007, China
  • Received:2017-03-10 Revised:2017-09-26 Published:2018-01-15
  • Supported by:
    This study was supported by Program for Projecet of Fund of Science and Technology of Hunan Province (2013FJ6024).

Abstract: Mini-implant anchorage for the orthodontic treatment is an effective method to reinforce anchorage. The stability is critical in the achievement of reliable anchorage. Three-dimensional finite element analysis is one of the most effective method to analyze biomechanics and simulate stomatognathic system, which has been widely used in orthodontic research. We summarized the current literature on the use of the three-dimensional finite element method in primary stability of mini-implant anchorage from aspects of mini-screw implants, bone and operation, in order to improve success of implant.

Key words: three-dimensional finite element analysis, mini-implant anchorage, stability

CLC Number: 

  • R783.5

TrendMD: 
[1]韩耀辉, 徐庚池, 牟兰, 等. 三维有限元分析在口腔正畸领域的研究进展[J]. 现代口腔医学杂志, 2015, 29(3):179-182. Han YH, Xu GC, Mou L, et al. Research progress in the field of orthodontics three-dimensional finite element analysis[J]. J Modern Stomatol, 2015, 29(3): 179-182.
[2]Zaparolli D, Peixoto RF, Pupim D, et al. Photoelastic analysis of mandibular full-arch implant-supported fixed dentures made with different bar materials and manufacturing techniques[J]. Mater Sci Eng C Mater Biol Appl, 2017, 81:144-147.
[3]Brozović J, Demoli N, Farkaš N, et al. Properties of axially loaded implant-abutment assemblies using di-gital holographic interferometry analysis[J]. Dent Mater, 2014, 30(3):e17-e27.
[4]Begonia M, Dallas M, Johnson ML, et al. Compa-rison of strain measurement in the mouse forearm using subject-specific finite element models, strain gaging, and digital image correlation[J]. Biomech Model Mechanobiol, 2017, 16(4):1243-1253.
[5]Chatzigianni A, Keilig L, Duschner H, et al. Com-parative analysis of numerical and experimental data of orthodontic mini-implants[J]. Eur J Orthod, 2011, 33(5):468-475.
[6]Thresher RW, Saito GE. The stress analysis of human teeth[J]. J Biomech, 1973, 6(5):443-449.
[7]Takahashi N, Kitagami T, Komori T. Behaviour of teeth under various loading conditions with finite element method[J]. J Oral Rehabil, 1980, 7(6):453- 461.
[8]Kanomi R. Mini-implant for orthodontic anchorage [J]. J Clin Orthod, 1997, 31(11):763-767.
[9]El-Beialy AR, Abou-El-Ezz AM, Attia KH, et al. Loss of anchorage of miniscrews: a 3-dimensional assessment[J]. Am J Orthod Dentofacial Orthop, 2009, 136(5):700-707.
[10]Ammar HH, Ngan P, Crout RJ, et al. Three-dimen-sional modeling and finite element analysis in treat-ment planning for orthodontic tooth movement[J]. Am J Orthod Dentofacial Orthop, 2011, 139(1):e59- e71.
[11]Gracco A, Cirignaco A, Cozzani M, et al. Numerical/experimental analysis of the stress field around mi-niscrews for orthodontic anchorage[J]. Eur J Orthod, 2009, 31(1):12-20.
[12]Schileo E, Taddei F, Cristofolini L, et al. Subject-specific finite element models implementing a maxi-mum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro [J]. J Biomech, 2008, 41(2):356-367.
[13]Albogha MH, Kitahara T, Todo M, et al. Maximum principal strain as a criterion for prediction of ortho-dontic mini-implants failure in subject-specific finite element models[J]. Angle Orthod, 2016, 86(1):24- 31.
[14]Rismanchian M, Birang R, Shahmoradi M, et al. Developing a new dental implant design and com-paring its biomechanical features with four designs [J]. Dent Res J (Isfahan), 2010, 7(2):70-75.
[15]Huang HL, Hsu JT, Fuh LJ, et al. Bone stress and interfacial sliding analysis of implant designs on an immediately loaded maxillary implant: a non-linear finite element study[J]. J Dent, 2008, 36(6):409-417.
[16]Ajami S, Mina A, Nabavizadeh SA. Stress distri-butions of a bracket type orthodontic miniscrew and the surrounding bone under moment loadings: Three-dimensional finite element analysis[J]. J Ortho-dont Sci, 2016, 5(2):64-69.
[17]单丽华, 董福生, 宫伟伟, 等. 微型种植体长度对骨界面应力分布的影响[J]. 华西口腔医学杂志, 2011, 29(1):27-30. Shan LH, Dong FS, Gong WW, et al. The effect of mini-implant lengths on stress distributions in peri-implant surface[J]. West Chin J Stomatol, 2011, 29 (1):27-30.
[18]房伟. 正畸微种植体优化设计的三维有限元分析[D]. 西安: 第四军医大学, 2009. Fang W. Three-dimensional finite element analysis of biomechanical optimum design of orthodontic mini-implant[D]. Xi’an: Forth Military Medical Uni-versity, 2009.
[19]Lu Y, Chang S, Ye J, et al. Analysis on the stress of the bone surrounding mini-implant with different diameters and lengths under torque[J]. Biomed Mater Eng, 2015, 26(Suppl 1):S541-S545.
[20]Liu TC, Chang CH, Wong TY, et al. Finite element analysis of miniscrew implants used for orthodontic anchorage[J]. Am J Orthod Dentofacial Orthop, 2012, 141(4):468-476.
[21]Chang PK, Chen YC, Huang CC, et al. Distribution of micromotion in implants and alveolar bone with different thread profiles in immediate loading: a finite element study[J]. Int J Oral Maxillofac Im-plants, 2012, 27(6):e96-101.
[22]Ao J, Li T, Liu Y, et al. Optimal design of thread height and width on an immediately loaded cylinder implant: a finite element analysis[J]. Comput Biol Med, 2010, 40(8):681-686.
[23][23]王维丽, 马洁, 李鑫, 等. 反支撑形螺纹种植体即刻负载时应力分布的三维有限元分析[J]. 口腔颌面修复学杂志, 2016, 17(4):211-215. Wang WL, Ma J, Li X, et al. Analysis of the biome-chanics stress distribution of the reverse buttress thread implant under immediate loading: a three dimensional finite element study[J]. Chin J Prosthod, 2016, 17(4):211-215.
[24][24]Atieh MA, Shahmiri RA. Evaluation of optimal taper of immediately loaded wide-diameter implants: a finite element analysis[J]. J Oral Implantol, 2013, 39 (2):123-132.
[25]Fattahi H, Ajami S, Rafsanjani AN. The effects of different miniscrew thread designs and force direc-tions on stress distribution by 3-dimensional finite element analysis[J]. J Dent (Shiraz), 2015, 16(4): 341-348.
[26]Alrbata RH, Yu W, Kyung HM. Biomechanical effectiveness of cortical bone thickness on ortho-dontic microimplant stability: an evaluation based on the load share between cortical and cancellous bone [J]. Am J Orthod Dentofacial Orthop, 2014, 146(2): 175-182.
[27]Lin TS, Tsai FD, Chen CY, et al. Factorial analysis of variables affecting bone stress adjacent to the or-thodontic anchorage mini-implant with finite element analysis[J]. Am J Orthod Dentofacial Orthop, 2013, 143(2):182-189.
[28]Albogha MH, Kitahara T, Todo M, et al. Predis-posing factors for orthodontic mini-implant failure defined by bone strains in patient-specific finite element models[J]. Ann Biomed Eng, 2016, 44(10): 2948-2956.
[29]Lin CL, Wang JC, Ramp LC, et al. Biomechanical response of implant systems placed in the maxillary posterior region under various conditions of angula-tion, bone density, and loading[J]. Int J Oral Maxillo-fac Implants, 2008, 23(1):57-64.
[30]Motoyoshi M, Inaba M, Ono A, et al. The effect of cortical bone thickness on the stability of orthodontic mini-implants and on the stress distribution in sur-rounding bone[J]. Int J Oral Maxillofac Surg, 2009, 38(1):13-18.
[31]Stahl E, Keilig L, Abdelgader I, et al. Numerical analyses of biomechanical behavior of various ortho-dontic anchorage implants[J]. J Orofac Orthop, 2009, 70(2):115-127.
[32]Suzuki A, Masuda T, Takahashi I, et al. Changes in stress distribution of orthodontic miniscrews and sur-rounding bone evaluated by 3-dimensional finite element analysis[J]. Am J Orthod Dentofacial Orthop, 2011, 140(6):e273-e280.
[33]Poorsattar Bejeh Mir A, Ravadgar M, Poorsattar Bejeh Mir M. Optimized orthodontic palatal mini-screw implant insertion angulation: a finite element analysis[J]. Int J Oral Maxillofac Implants, 2015, 30 (1):e1-e9.
[34]Kuroda S, Inoue M, Kyung HM, et al. Stress distri-bution in obliquely inserted orthodontic miniscrews evaluated by three-dimensional finite-element ana-lysis[J]. Int J Oral Maxillofac Implants, 2017, 32 (2):344-349.
[35]Choi SH, Kim SJ, Lee KJ, et al. Stress distributions in peri-miniscrew areas from cylindrical and tapered miniscrews inserted at different angles[J]. Korean J Orthod, 2016, 46(4):189-198.
[36]张扬, 张丹, 冯翠娟. 微小种植体正畸支抗生物力学的三维有限元分析[J]. 上海口腔医学, 2005, 14 (3):281-283. Zhang Y, Zhang D, Feng CJ. A three-dimensional finite element analysis for the biomechanical charac-teristics of orthodontic anchorage micro-implant[J].Shanghai J Stomatol, 2005, 14(3):281-283.
[37]Perillo L, Jamilian A, Shafieyoon A, et al. Finite element analysis of miniscrew placement in mandi-bular alveolar bone with varied angulations[J]. Eur J Orthod, 2015, 37(1):56-59.
[38]Lee J, Kim JY, Choi YJ, et al. Effects of placement angle and direction of orthopedic force application on the stability of orthodontic miniscrews[J]. Angle Orthod, 2013, 83(4):667-673.
[39]Woodall N, Tadepalli SC, Qian F, et al. Effect of miniscrew angulation on anchorage resistance[J]. Am J Orthod Dentofacial Orthop, 2011, 139(2):e147- e152.
[40]Zhao L, Xu Z, Wei X, et al. Effect of placement angle on the stability of loaded titanium microscrews: a microcomputed tomographic and biomechanical analysis[J]. Am J Orthod Dentofacial Orthop, 2011, 139(5):628-635.
[41]Miyamoto I, Tsuboi Y, Wada E, et al. Influence of cortical bone thickness and implant length on im-plant stability at the time of surgery—clinical, pro-spective, biomechanical, and imaging study[J]. Bone, 2005, 37(6):776-780.
[42]Frost HM. A brief review for orthopedic surgeons: fatigue damage (microdamage) in bone (its deter-minants and clinical implications)[J]. J Orthop Sci, 1998, 3(5):272-281.
[43]Motoyoshi M, Ueno S, Okazaki K, et al. Bone stress for a mini-implant close to the roots of adjacent teeth—3D finite element analysis[J]. Int J Oral Ma-xillofac Surg, 2009, 38(4):363-368.
[44]Shan LH, Guo N, Zhou GJ, et al. Finite element analysis of bone stress for miniscrew implant pro-ximal to root under occlusal force and implant loa-ding[J]. J Craniofac Surg, 2015, 26(7):2072-2076.
[45]Singh S, Mogra S, Shetty VS, et al. Three-dimensional finite element analysis of strength, stability, and stress distribution in orthodontic anchorage: a conical, self-drilling miniscrew implant system[J]. Am J Orthod Dentofacial Orthop, 2012, 141(3):327-336.
[46]Tepedino M, Masedu F, Chimenti C. Comparative evaluation of insertion torque and mechanical stabi-lity for self-tapping and self-drilling orthodontic miniscrews—an in vitro study[J]. Head Face Med, 2017, 13(1):10.
[47]Melo AC, Andrighetto AR, Hirt SD, et al. Risk factors associated with the failure of miniscrews—a ten-year cross sectional study[J]. Braz Oral Res, 2016, 30(1):e124.
[1] Xu Shukui,Zhang Shan,Xie Xinyu,Ma Wensheng.. Progress in research into the long-term stability of maxillary protraction therapy in skeletal classmalocclusion [J]. Int J Stomatol, 2023, 50(6): 646-652.
[2] Zhang Shan,Ge Xiaolei,Li Jie,Xie Xinyu,Chang Weiwei,Ma Wensheng.. Meta-analysis of the long-term effect of maxillary protraction on jaw growth and development [J]. Int J Stomatol, 2022, 49(5): 548-555.
[3] Yang Yunqi,Lin Yangyang,Hou Min. Research advances on jaw stability and influencing factors in surgery-first approach [J]. Int J Stomatol, 2022, 49(2): 227-232.
[4] Liu Ling,Gong Renguo,Dong Xiuhua,Liu Rumeng. Meta-analysis of the long-term stability of serious anterior skeletal open-bite malocclusion after orthodontic surgery [J]. Int J Stomatol, 2021, 48(2): 173-179.
[5] Tian Qinglu,Zhao Zhihe. Research progress on stability of mini-implants in orthodontic treatments [J]. Int J Stomatol, 2020, 47(2): 212-218.
[6] Chen Xin,Mao Bochun,Lu Yuqing,Dong Bo,Zhu Zhuoli,Yue Li,Yu Haiyang. Research on mechanical property of Co-Cr alloy and polyetheretherketone frameworks of removable partial denture: a three-dimensional finite element analysis [J]. Int J Stomatol, 2019, 46(5): 526-531.
[7] Zhang Xiao, Deng Qingwan, Du Qiong, Xie Jing. Three-dimensional finite element analysis of premolars restored with master fiber post-combined with auxiliary fiber post [J]. Inter J Stomatol, 2017, 44(5): 559-565.
[8] Wang Qiaojing, Huang Zhenxian, Xiao Liwei. Research progress on mini-implant displacement under orthodontic loading [J]. Inter J Stomatol, 2015, 42(5): 572-574.
[9] Guan Qing, Jin Tao, Gu Yongchun, Yang Ben, Ni Longxing. Three-dimensional finite element analysis of three types of instruments used in curved root canals subjected to torsional load [J]. Inter J Stomatol, 2015, 42(3): 269-272.
[10] Lu Yingjuan, Chang Shaohai. Factors affecting primary stability of mini-implant anchorage [J]. Inter J Stomatol, 2013, 40(3): 403-405.
[11] Wang Yanan, Yang Siwei..
The clinical and basic research of mini -implant anchorage for the anterior teeth intrusion
[J]. Inter J Stomatol, 2013, 40(2): 221-223.
[12] Hu Xinyi, Pan Xiaogang.. Clinical and research progress on the treatment effect and the long term stability of cleft lip and palate patients with maxillary hypoplasia during prepuberty [J]. Inter J Stomatol, 2011, 38(5): 584-588.
[13] WU Ying-ying, GONG Ping. Present study and progress of the initial stability of implant [J]. Inter J Stomatol, 2009, 36(6): 726-728.
[14] DENG Xiao, LI Xiao-bing. Research in the shape and function of curve of Spee's [J]. Inter J Stomatol, 2008, 35(6): 715-715~716,720.
[15] HUANG Yan, XIAN Su-qin.. Effects of Design of Dental Implant on Immediate Implant and Immediate Loading [J]. Inter J Stomatol, 2007, 34(02): 131-133.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 458 -460 .
[8] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 452 -454 .
[9] . [J]. Inter J Stomatol, 2008, 35(S1): .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .