Inter J Stomatol ›› 2012, Vol. 39 ›› Issue (1): 33-36.doi: 10.3969/j.issn.1673-5749.2012.01.009

Previous Articles     Next Articles

Biological effects of nano -hydroxyapatite -aliphatic polyester -amide composite on the osteoblasts

Deng Xia1, Xia Xi2.   

  1. 1. Dept. of Stomatology, Nuclear of Industry 416 Hospital, Chengdu 610051, China; 2. Dept. of Prosthodontics, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing 400015, China
  • Received:2011-04-20 Revised:2011-10-09 Online:2012-01-01 Published:2012-01-01

Abstract:

Objective To evaluate the biological effects of nano-hydroxyapatite-aliphatic polyester-amide composite( nHA-PEA) on the osteoblast. Methods The Dulbecco minimum essential medium(DMEM) leaching liquor of nHA-PEA was applied to the osteoblasts of the test groups while the DMEM itself was applied to control. The methyl thiazolyl tetrazolium assay, flow cytometry and alkaline phosphatase(AKP) analysis were used to evaluate the changes in cell growth, cell cycle and cell function. Moreover, osteoblasts were cultured on the surface of nHA-PEA composite and the attachment, growth and proliferation of osteoblast were investigated. Results The cultured osteoblasts grew well and showed nomorphological variation. Osteoblasts of different test groups demonstrated relative proliferation rate ranging from 92%~107% without dose-dependent effect(P>0.05). The cell cycle and AKP activity were similar in test and control groups(P>0.05). Good cell attachment and proliferation manner were observed on the membranes. Conclusion nHA-PEA has no negative effects on the osteoblast and its osteoblastcompatibility is proved.

Key words: nano-hydroxyapatite-aliphatic polyester-amide composite, osteoblast, biocompatibility


TrendMD: 
[1] Yan Yujia,Zou Ling.. Reseach progress on bioceramic root canal sealer [J]. Int J Stomatol, 2022, 49(5): 578-585.
[2] Zhang Jingyi,Li Danwei,Sun Yu,Lei Yayan,Liu Tao,Gong Yu. In vitro cytotoxicity of composite resin and compomer and effect on osteogenic differentiation of osteoblasts [J]. Int J Stomatol, 2022, 49(4): 412-419.
[3] Zhang Xidan,Sun Jiyu,Fu Xinliang,Gan Xueqi.. Research progress on the development of mesoporous calcium silicate nanoparticles in endodontics and repairing maxillofacial bone defects [J]. Int J Stomatol, 2022, 49(4): 476-482.
[4] Lü Hui,Wang Hua,Sun Wen. T helper cell 17 and periodontitis related osteoimmunology [J]. Int J Stomatol, 2020, 47(6): 661-668.
[5] Sun Jianwei,Lei Lihong,Tan Jingyi,Chen Lili. Regulation of osteoimmunology by MicroRNA 155 and research progress of its possible mechanism in periodontitis [J]. Int J Stomatol, 2020, 47(5): 607-615.
[6] Ma Kai,Li Hao,Zhao Hongmei,Wang Yongliang,Liu Jie,Bai Na. Effects of inorganic bovine bone treated with low temperature argon-oxygen plasma on the adhesion, proliferation, and differentiation of MC3T3-E1 cells [J]. Int J Stomatol, 2020, 47(3): 278-285.
[7] Zhu Junjin,Zhou Jiaqi,Wu Yingying. Function of autophagy induced by mammalian target of rapamycin complex 1 in bone metabolism [J]. Int J Stomatol, 2020, 47(1): 84-89.
[8] Lu Kexin,Zhang Diya,Wu Yanmin. Research progress of protease-activated receptors on different types of cells in periodontal tissue [J]. Int J Stomatol, 2019, 46(6): 657-662.
[9] Fei Liu,Yuntao Zhang,Xiangrui Ma,Yajie Zhang,Yunhao Wang. Effect of the titanium surface immobilised by arginyl-glycyl-aspartate peptide self-assembling multilayers on mouse osteoblast-like cell MC3T3-E1 [J]. Inter J Stomatol, 2019, 46(2): 203-208.
[10] Xue Lingfa, Zhang Daizun, Xiao Wenlin, Yu Baojun. Mechanical strain induces mouse bone mesenchymal stem cells osteogenic differentiation [J]. Inter J Stomatol, 2017, 44(6): 679-685.
[11] Geng Yuanming1, Shen Xiaoqing1, Xu Pingping2.. Effects of biological stress and mitogen-activated protein kinase on bone remodeling [J]. Inter J Stomatol, 2016, 43(6): 700-705.
[12] Zhang Jiaxi1, He Meili1, Zhao Bingsong1, Li Linmei2. Roles of erythropoietin on the differentiation of osteoblasts [J]. Inter J Stomatol, 2016, 43(6): 636-639.
[13] Hou Yubo1, Liu Xinchan2, Yu Haiyan1, Cui Leihua3, Yu Weixian4. Effect of gingipains on osteoclasts and osteoblasts [J]. Inter J Stomatol, 2016, 43(5): 609-613.
[14] Huang Yihua, Ling Junqi. . Role of Toll-like receptor 2 and Toll-like receptor 4 in osteoblastic differentiation [J]. Inter J Stomatol, 2015, 42(4): 492-495.
[15] Zhou Zheng, Zhao Changming, Jiao Kai, Wang Meiqing. Regulatory role of sympathetic nervous system–adrenergic receptor on bone remodeling [J]. Inter J Stomatol, 2015, 42(3): 348-351.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[9] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[10] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .