国际口腔医学杂志 ›› 2022, Vol. 49 ›› Issue (6): 641-647.doi: 10.7518/gjkq.2022103

• 论著 • 上一篇    下一篇

钙黏蛋白5驱动内皮细胞特异性过表达Dickkopf 1影响骨形成

尹一佳1(),杨瑾廷1,申建琪2,黄凌依1,井岩3,官秋玥4(),韩向龙1   

  1. 1.口腔疾病研究国家重点实验室;国家口腔疾病临床医学研究中心;四川大学华西口腔医院正畸科 成都 610041
    2.山西医科大学汾阳学院 吕梁 032299
    3.美国德克萨斯州农工大学贝勒牙科学院 达拉斯 TX 75246
    4.四川省人民医院草堂病区老年病房 成都 610072
  • 收稿日期:2022-02-01 修回日期:2022-07-15 出版日期:2022-11-01 发布日期:2022-11-03
  • 通讯作者: 官秋玥
  • 作者简介:尹一佳,学士,Email:yvonnist@163.com
  • 基金资助:
    四川省科技厅应用基础研究项目(2018JY0271)

Endothelial-cell-specific overexpression of Dickkopf 1 using Cadherin 5 promoter regulates osteogenesis in vivo

Yin Yijia1(),Yang Jinting1,Shen Jianqi2,Huang Lingyi1,Jing Yan3,Guan Qiuyue4(),Han Xianglong1   

  1. 1.State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
    2.Fenyang College of Shanxi Medical University, Lüliang 032299, China
    3.Baylor College of Dentistry, Texas A&M University, Dallas TX 75246, USA
    4.Geriatric Department, Caotang District, Sichuan Provincial People’s Hospital, Chengdu 610072, China
  • Received:2022-02-01 Revised:2022-07-15 Online:2022-11-01 Published:2022-11-03
  • Contact: Qiuyue Guan
  • Supported by:
    Applied Basic Research Program of Science & Technology Department of Sichuan Province(2018JY0271)

摘要:

目的 通过检测体内内皮细胞特异性过表达Dickkopf 1(DKK1)对股骨和牙槽骨骨形成和血管形成的影响,为DDK1在正畸牙移动骨重建和血管形成中的作用提供依据。 方法 构建钙黏蛋白5(Cdh5)驱动的内皮细胞特异性DKK1过表达转基因小鼠(Cdh5-Cre;R26-DKK1/R26-DKK1),检测股骨和牙槽骨骨形态和骨量的变化。 结果 Cdh5-Cre;R26-DKK1/R26-DKK1小鼠的股骨和牙槽骨DKK1高表达,骨量增加,骨髓腔缩窄;股骨中Trap+细胞数目降低;股骨和牙槽骨中Ⅳ型胶原蛋白表达增加。 结论 DKK1可能调控正畸牙移动。Cdh5驱动内皮细胞中DKK1表达增加与骨组织中软骨细胞的分化及骨小梁的形成、牙周组织骨量的增加密切相关。

关键词: 内皮细胞, 骨形成, 股骨, 牙槽骨

Abstract:

Objective This study aimed to the expression of Dickkopf 1 (DKK1) during orthodontic tooth movement is examined. Then, the effects of endothelial-cell-specific overexpression of DKK1 on bone formation were detected. Moreover, the function of DKK1 on bone formation through endothelial cells was explained. Methods A rat orthodontic tooth movement model was constructed to detect the expression of DKK1 on the compressive and tensile side of alveolar bone. Then, R26-DKK1 and Cadherin 5 (Cdh5)-Cre mice were crossbred to produce transgenic mice expressing DKK1 in endothelial cells (Cdh5-Cre; R26-DKK1/R26-DKK1) and to detect the changes of bone morphology and bone volume of the femur and alveolar bone. Results During orthodontic tooth movement, DKK1 was highly expressed in the compressive side. DKK1 transgenic mice widely expressed DKK1 in the femur and alveolar bone, increased in bone density, narrowed in central bone marrow cavity, and increased in Trap+ cells numbers and collagen Ⅳ expression compared with wild type controls. Conclusion DKK1 might regulate orthodontic tooth movement. Endothelial-cell-specific overexpression of DKK1 using Cdh5 promoter is closely related to the differentiation of chondrocytes and the formation of trabecular bone, and causes increased expression level of collagen Ⅳ in periodontal tissue and bone.

Key words: endothelial cells, bone formation, femur, alveolar bone

中图分类号: 

  • R 782

图1

DKK1 Tg小鼠股骨和牙槽骨DKK1表达情况A:免疫组织化学显示,Dkk1 Tg小鼠股骨DKK1表达量,股骨生长板软骨-骨界面(黄色实线),软骨细胞DKK-1表达(白色箭头);B:免疫组织化学显示,Dkk1 Tg小鼠牙周组织DKK1表达量,牙周膜(黄色实线内),DKK1表达(白色星形)。"

图 2

DKK1 Tg小鼠股骨及牙槽骨形态学和骨量改变A:Micro-CT示股骨远心端及牙槽骨骨量变化,*P<0.05,NS示P>0.05;B:HE染色示,股骨远心端形态学变化,股骨远心端生长板(黑色线段),肥大软骨细胞层(白色箭头);C:HE染色示,牙槽骨形态学变化,密质骨(白色星),松质骨间髓腔(白色箭头)。"

图3

DKK1 Tg小鼠股骨破骨活性A:股骨Trap+染色(白色箭头);B:股骨Trap+细胞计数。 *P<0.05。"

图 4

DKK1 Tg小鼠Col IV表达情况A:股骨Col Ⅳ表达量在生长板软骨-骨界面和肥大软骨细胞的表达(白色箭头);B:下颌骨牙周膜中Col Ⅳ表达(白色星)。"

1 Glinka A, Wu W, Delius H, et al. Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction[J]. Nature, 1998, 391(6665): 357-362.
2 Jaschke N, Hofbauer LC, Göbel A, et al. Evolving functions of Dickkopf-1 in cancer and immunity[J]. Cancer Lett, 2020, 482: 1-7.
3 Zhang L, Tang Y, Zhu X, et al. Overexpression of MiR-335-5p promotes bone formation and regeneration in mice[J]. J Bone Miner Res, 2017, 32(12): 2466-2475.
4 Jang J, Jung Y, Kim Y, et al. LPS-induced inflammatory response is suppressed by Wnt inhibitors, Dickkopf-1 and LGK974[J]. Sci Rep, 2017, 7: 41612.
5 Daoussis D, Andonopoulos AP. The emerging role of Dickkopf-1 in bone biology: is it the main switch controlling bone and joint remodeling[J]. Semin Arthritis Rheum, 2011, 41(2): 170-177.
6 Klavdianou K, Liossis SN, Sakkas L, et al. The role of Dickkopf-1 in joint remodeling and fibrosis: a link connecting spondyloarthropathies and scleroderma[J]. Semin Arthritis Rheum, 2017, 46(4): 430-438.
7 Ma Y, Zhang X, Wang M, et al. The serum level of Dickkopf-1 in patients with rheumatoid arthritis: a systematic review and meta-analysis[J]. Int Immunopharmacol, 2018, 59: 227-232.
8 Li J, Gong W, Li X, et al. Recent progress of wnt pathway inhibitor dickkopf-1 in liver cancer[J]. J Nanosci Nanotechnol, 2018, 18(8): 5192-5206.
9 Morvan F, Boulukos K, Clément-Lacroix P, et al. Deletion of a single allele of the Dkk1 gene leads to an increase in bone formation and bone mass[J]. J Bone Miner Res, 2006, 21(6): 934-945.
10 Goes P, Dutra C, Lösser L, et al. Loss of dkk-1 in osteocytes mitigates alveolar bone loss in mice with periodontitis[J]. Front Immunol, 2019, 10: 2924.
11 Samiei M, Janjić K, Cvikl B, et al. The role of sclerostin and dickkopf-1 in oral tissues-a review from the perspective of the dental disciplines[J]. F1000Res, 2019, 8: 128.
12 Ribatti D, Nico B, Vacca A, et al. Endothelial cell heterogeneity and organ specificity[J]. J Hematother Stem Cell Res, 2002, 11(1): 81-90.
13 Kusumbe AP, Ramasamy SK, Adams RH. Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone[J]. Nature, 2014, 507(7492): 323-328.
14 Ke HZ, Richards WG, Li X, et al. Sclerostin and Dickkopf-1 as therapeutic targets in bone diseases[J]. Endocr Rev, 2012, 33(5): 747-783.
15 Klingenschmid G, Tschiderer L, Himmler G, et al. Associations of serum dickkopf-1 and sclerostin with cardiovascular events: results from the prospective Bruneck study[J]. J Am Heart Assoc, 2020, 9(6): e014816.
16 Yang L, Soonpaa MH, Adler ED, et al. Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population[J]. Nature, 2008, 453(7194): 524-528.
17 Ueland T, Otterdal K, Lekva T, et al. Dickkopf-1 enhances inflammatory interaction between platelets and endothelial cells and shows increased expression in atherosclerosis[J]. Arterioscler Thromb Vasc Biol, 2009, 29(8): 1228-1234.
18 Yamaguchi Y, Passeron T, Hoashi T, et al. Dickkopf 1 (DKK1) regulates skin pigmentation and thickness by affecting Wnt/beta-catenin signaling in keratinocytes[J]. FASEB J, 2008, 22(4): 1009-1020.
19 Smadja DM, ’ Audigier C d, Weiswald LB, et al. The Wnt antagonist Dickkopf-1 increases endothelial progenitor cell angiogenic potential[J]. Arterioscler Thromb Vasc Biol, 2010, 30(12): 2544-2552.
20 Choi HJ, Park H, Lee HW, et al. The Wnt pathway and the roles for its antagonists, DKKS, in angiogenesis[J]. IUBMB Life, 2012, 64(9): 724-731.
21 Oh H, Ryu JH, Jeon J, et al. Misexpression of Dickkopf-1 in endothelial cells, but not in chondrocytes or hypertrophic chondrocytes, causes defects in endochondral ossification[J]. J Bone Miner Res, 2012, 27(6): 1335-1344.
22 Baetta R, Banfi C. Dkk (Dickkopf) proteins[J]. Arterioscler Thromb Vasc Biol, 2019, 39(7): 1330-1342.
23 Ramli FF, Chin KY. A review of the potential application of osteocyte-related biomarkers, fibroblast growth factor-23, sclerostin, and dickkopf-1 in predicting osteoporosis and fractures[J]. Diagnostics (Basel), 2020, 10(3): E145.
24 Mäkitie RE, Kämpe A, Costantini A, et al. Biomarkers in WNT1 and PLS3 osteoporosis: altered concentrations of DKK1 and FGF23[J]. J Bone Miner Res, 2020, 35(5): 901-912.
25 Florio M, Gunasekaran K, Stolina M, et al. A bispecific antibody targeting sclerostin and DKK-1 promotes bone mass accrual and fracture repair[J]. Nat Commun, 2016, 7: 11505.
26 Rojas A, Mardones R, Pritzker K, et al. Dickkopf-1 reduces hypertrophic changes in human chondrocytes derived from bone marrow stem cells[J]. Gene, 2019, 687: 228-237.
27 Li W, Xiong Y, Chen W, et al. Wnt/β-catenin signaling may induce senescence of chondrocytes in osteoarthritis[J]. Exp Ther Med, 2020, 20(3): 2631-2638.
28 Shimonishi M, Sato J, Takahashi N, et al. Expression of type Ⅳ collagen and laminin at the interface between epithelial cells and fibroblasts from human periodontal ligament[J]. Eur J Oral Sci, 2005, 113(1): 34-40.
29 Narimiya T, Wada S, Kanzaki H, et al. Orthodontic tensile strain induces angiogenesis via type Ⅳ collagen degradation by matrix metalloproteinase-12[J]. J Periodontal Res, 2017, 52(5): 842-852.
30 Foldager CB, Toh WS, Gomoll AH, et al. Distribution of basement membrane molecules, laminin and collagen type Ⅳ, in normal and degenerated cartilage tissues[J]. Cartilage, 2014, 5(2): 123-132.
31 Alva JA, Zovein AC, Monvoisin A, et al. VE-Cadherin-Cre-recombinase transgenic mouse: a tool for lineage analysis and gene deletion in endothelial cells[J]. Dev Dyn, 2006, 235(3): 759-767.
32 Fouda AY, Xu Z, Narayanan SP, et al. Utility of LysM-cre and Cdh5-cre driver mice in retinal and brain research: an imaging study using tdTomato reporter mouse[J]. Invest Ophthalmol Vis Sci, 2020, 61(3): 51.
33 Gustafsson E, Brakebusch C, Hietanen K, et al. Tie-1-directed expression of Cre recombinase in endothelial cells of embryoid bodies and transgenic mice[J]. J Cell Sci, 2001, 114(pt 4): 671-676.
[1] 余岳霖,孔卫东. 甲状旁腺激素受体1基因相关与原发性牙齿萌出障碍的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 573-580.
[2] 黄定明, 张岚, 满毅. 牙保存相关上颌窦底提升术的生物学基础[J]. 国际口腔医学杂志, 2023, 50(3): 251-262.
[3] 蒋端,申道南,赵蕾,吴亚菲. 内皮发育调节基因-1与牙周炎相关性的研究进展[J]. 国际口腔医学杂志, 2022, 49(2): 244-248.
[4] 伍春兰,唐华,陈军. 成人骨性Ⅱ类高角开牙合患者上下切牙区牙槽骨形态的三维研究[J]. 国际口腔医学杂志, 2021, 48(4): 426-432.
[5] 雷双,庾靖君,唐晓琳. 牙龈卟啉单胞菌对不同组织来源血管内皮细胞的作用及机制的研究进展[J]. 国际口腔医学杂志, 2021, 48(1): 23-28.
[6] 付世锦,曾刊,李鑫,杨静,汪成林,叶玲. 骨保护素/核因子κB受体活化因子配体影响肺癌细胞下颌骨与股骨转移差异的初步研究[J]. 国际口腔医学杂志, 2020, 47(5): 538-546.
[7] 王琳璇,王琦,赵云,米方林. 促红细胞生成素肝细胞激酶受体及其膜结合配体对牙槽骨改建作用的研究进展[J]. 国际口腔医学杂志, 2019, 46(6): 724-729.
[8] 高鑫,曾融生. 骨保护素在口腔领域的研究进展[J]. 国际口腔医学杂志, 2019, 46(3): 316-319.
[9] 姜懿轩,莫龙义,贾小玥,徐欣,刘程程. 植物雌激素防治牙周炎的研究进展[J]. 国际口腔医学杂志, 2018, 45(5): 571-578.
[10] 吴琪, 刘程程, 郑黎薇, 李继遥, 周学东, 徐欣. 肠道微生物调控骨代谢的研究进展[J]. 国际口腔医学杂志, 2017, 44(6): 628-635.
[11] 刘双, 李纾. 表观遗传学及其调控与牙周病[J]. 国际口腔医学杂志, 2017, 44(5): 523-527.
[12] 安宁, 唐正龙. 甲状旁腺激素调控牙周组织改建的研究进展[J]. 国际口腔医学杂志, 2017, 44(4): 466-470.
[13] 苟敏 蔡潇潇. 种植体—基台微间隙对种植体颈部周围骨的影响[J]. 国际口腔医学杂志, 2015, 42(6): 733-738.
[14] 王亚斐,刘畅. 力敏感因子对软骨内成骨的调控作用[J]. 国际口腔医学杂志, 2015, 42(5): 615-619.
[15] 刘伟,凌均棨. 牙髓干细胞诱导分化为血管内皮细胞的研究进展[J]. 国际口腔医学杂志, 2014, 41(6): 707-711.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王昆润. 二甲亚砜和双氯芬酸并用治疗根尖周炎[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 汤庆奋,王学侠. 17β-雌二醇对人类阴道和口腔颊粘膜的渗透性[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 潘劲松. 颈总动脉指压和颈内动脉球囊阻断试验在大脑血液动力学中的不同影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[4] 王昆润. 后牙冠根斜形牙折的治疗[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 杨锦波. 嵌合体防龋疫苗的研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 王昆润. 下颔骨成形术用网状钛板固定植骨块[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 汪月月,郭莉莉. 口腔机能与老化—痴呆危险因素流行病学研究[J]. 国际口腔医学杂志, 1999, 26(04): .
[8] 丁刚. 应用硬组织代用品种植体行丰颏术[J]. 国际口腔医学杂志, 1999, 26(04): .
[9] 田磊. 局部应用脂多糖后结合上皮反应性增生的变化[J]. 国际口腔医学杂志, 1999, 26(04): .
[10] 戴青. 口腔念珠菌病的新分类[J]. 国际口腔医学杂志, 1999, 26(04): .