国际口腔医学杂志 ›› 2022, Vol. 49 ›› Issue (6): 641-647.doi: 10.7518/gjkq.2022103
尹一佳1(),杨瑾廷1,申建琪2,黄凌依1,井岩3,官秋玥4(),韩向龙1
Yin Yijia1(),Yang Jinting1,Shen Jianqi2,Huang Lingyi1,Jing Yan3,Guan Qiuyue4(),Han Xianglong1
摘要:
目的 通过检测体内内皮细胞特异性过表达Dickkopf 1(DKK1)对股骨和牙槽骨骨形成和血管形成的影响,为DDK1在正畸牙移动骨重建和血管形成中的作用提供依据。 方法 构建钙黏蛋白5(Cdh5)驱动的内皮细胞特异性DKK1过表达转基因小鼠(Cdh5-Cre;R26-DKK1/R26-DKK1),检测股骨和牙槽骨骨形态和骨量的变化。 结果 Cdh5-Cre;R26-DKK1/R26-DKK1小鼠的股骨和牙槽骨DKK1高表达,骨量增加,骨髓腔缩窄;股骨中Trap+细胞数目降低;股骨和牙槽骨中Ⅳ型胶原蛋白表达增加。 结论 DKK1可能调控正畸牙移动。Cdh5驱动内皮细胞中DKK1表达增加与骨组织中软骨细胞的分化及骨小梁的形成、牙周组织骨量的增加密切相关。
中图分类号:
1 | Glinka A, Wu W, Delius H, et al. Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction[J]. Nature, 1998, 391(6665): 357-362. |
2 | Jaschke N, Hofbauer LC, Göbel A, et al. Evolving functions of Dickkopf-1 in cancer and immunity[J]. Cancer Lett, 2020, 482: 1-7. |
3 | Zhang L, Tang Y, Zhu X, et al. Overexpression of MiR-335-5p promotes bone formation and regeneration in mice[J]. J Bone Miner Res, 2017, 32(12): 2466-2475. |
4 | Jang J, Jung Y, Kim Y, et al. LPS-induced inflammatory response is suppressed by Wnt inhibitors, Dickkopf-1 and LGK974[J]. Sci Rep, 2017, 7: 41612. |
5 | Daoussis D, Andonopoulos AP. The emerging role of Dickkopf-1 in bone biology: is it the main switch controlling bone and joint remodeling[J]. Semin Arthritis Rheum, 2011, 41(2): 170-177. |
6 | Klavdianou K, Liossis SN, Sakkas L, et al. The role of Dickkopf-1 in joint remodeling and fibrosis: a link connecting spondyloarthropathies and scleroderma[J]. Semin Arthritis Rheum, 2017, 46(4): 430-438. |
7 | Ma Y, Zhang X, Wang M, et al. The serum level of Dickkopf-1 in patients with rheumatoid arthritis: a systematic review and meta-analysis[J]. Int Immunopharmacol, 2018, 59: 227-232. |
8 | Li J, Gong W, Li X, et al. Recent progress of wnt pathway inhibitor dickkopf-1 in liver cancer[J]. J Nanosci Nanotechnol, 2018, 18(8): 5192-5206. |
9 | Morvan F, Boulukos K, Clément-Lacroix P, et al. Deletion of a single allele of the Dkk1 gene leads to an increase in bone formation and bone mass[J]. J Bone Miner Res, 2006, 21(6): 934-945. |
10 | Goes P, Dutra C, Lösser L, et al. Loss of dkk-1 in osteocytes mitigates alveolar bone loss in mice with periodontitis[J]. Front Immunol, 2019, 10: 2924. |
11 | Samiei M, Janjić K, Cvikl B, et al. The role of sclerostin and dickkopf-1 in oral tissues-a review from the perspective of the dental disciplines[J]. F1000Res, 2019, 8: 128. |
12 | Ribatti D, Nico B, Vacca A, et al. Endothelial cell heterogeneity and organ specificity[J]. J Hematother Stem Cell Res, 2002, 11(1): 81-90. |
13 | Kusumbe AP, Ramasamy SK, Adams RH. Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone[J]. Nature, 2014, 507(7492): 323-328. |
14 | Ke HZ, Richards WG, Li X, et al. Sclerostin and Dickkopf-1 as therapeutic targets in bone diseases[J]. Endocr Rev, 2012, 33(5): 747-783. |
15 | Klingenschmid G, Tschiderer L, Himmler G, et al. Associations of serum dickkopf-1 and sclerostin with cardiovascular events: results from the prospective Bruneck study[J]. J Am Heart Assoc, 2020, 9(6): e014816. |
16 | Yang L, Soonpaa MH, Adler ED, et al. Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population[J]. Nature, 2008, 453(7194): 524-528. |
17 | Ueland T, Otterdal K, Lekva T, et al. Dickkopf-1 enhances inflammatory interaction between platelets and endothelial cells and shows increased expression in atherosclerosis[J]. Arterioscler Thromb Vasc Biol, 2009, 29(8): 1228-1234. |
18 | Yamaguchi Y, Passeron T, Hoashi T, et al. Dickkopf 1 (DKK1) regulates skin pigmentation and thickness by affecting Wnt/beta-catenin signaling in keratinocytes[J]. FASEB J, 2008, 22(4): 1009-1020. |
19 | Smadja DM, ’ Audigier C d, Weiswald LB, et al. The Wnt antagonist Dickkopf-1 increases endothelial progenitor cell angiogenic potential[J]. Arterioscler Thromb Vasc Biol, 2010, 30(12): 2544-2552. |
20 | Choi HJ, Park H, Lee HW, et al. The Wnt pathway and the roles for its antagonists, DKKS, in angiogenesis[J]. IUBMB Life, 2012, 64(9): 724-731. |
21 | Oh H, Ryu JH, Jeon J, et al. Misexpression of Dickkopf-1 in endothelial cells, but not in chondrocytes or hypertrophic chondrocytes, causes defects in endochondral ossification[J]. J Bone Miner Res, 2012, 27(6): 1335-1344. |
22 | Baetta R, Banfi C. Dkk (Dickkopf) proteins[J]. Arterioscler Thromb Vasc Biol, 2019, 39(7): 1330-1342. |
23 | Ramli FF, Chin KY. A review of the potential application of osteocyte-related biomarkers, fibroblast growth factor-23, sclerostin, and dickkopf-1 in predicting osteoporosis and fractures[J]. Diagnostics (Basel), 2020, 10(3): E145. |
24 | Mäkitie RE, Kämpe A, Costantini A, et al. Biomarkers in WNT1 and PLS3 osteoporosis: altered concentrations of DKK1 and FGF23[J]. J Bone Miner Res, 2020, 35(5): 901-912. |
25 | Florio M, Gunasekaran K, Stolina M, et al. A bispecific antibody targeting sclerostin and DKK-1 promotes bone mass accrual and fracture repair[J]. Nat Commun, 2016, 7: 11505. |
26 | Rojas A, Mardones R, Pritzker K, et al. Dickkopf-1 reduces hypertrophic changes in human chondrocytes derived from bone marrow stem cells[J]. Gene, 2019, 687: 228-237. |
27 | Li W, Xiong Y, Chen W, et al. Wnt/β-catenin signaling may induce senescence of chondrocytes in osteoarthritis[J]. Exp Ther Med, 2020, 20(3): 2631-2638. |
28 | Shimonishi M, Sato J, Takahashi N, et al. Expression of type Ⅳ collagen and laminin at the interface between epithelial cells and fibroblasts from human periodontal ligament[J]. Eur J Oral Sci, 2005, 113(1): 34-40. |
29 | Narimiya T, Wada S, Kanzaki H, et al. Orthodontic tensile strain induces angiogenesis via type Ⅳ collagen degradation by matrix metalloproteinase-12[J]. J Periodontal Res, 2017, 52(5): 842-852. |
30 | Foldager CB, Toh WS, Gomoll AH, et al. Distribution of basement membrane molecules, laminin and collagen type Ⅳ, in normal and degenerated cartilage tissues[J]. Cartilage, 2014, 5(2): 123-132. |
31 | Alva JA, Zovein AC, Monvoisin A, et al. VE-Cadherin-Cre-recombinase transgenic mouse: a tool for lineage analysis and gene deletion in endothelial cells[J]. Dev Dyn, 2006, 235(3): 759-767. |
32 | Fouda AY, Xu Z, Narayanan SP, et al. Utility of LysM-cre and Cdh5-cre driver mice in retinal and brain research: an imaging study using tdTomato reporter mouse[J]. Invest Ophthalmol Vis Sci, 2020, 61(3): 51. |
33 | Gustafsson E, Brakebusch C, Hietanen K, et al. Tie-1-directed expression of Cre recombinase in endothelial cells of embryoid bodies and transgenic mice[J]. J Cell Sci, 2001, 114(pt 4): 671-676. |
[1] | 余岳霖,孔卫东. 甲状旁腺激素受体1基因相关与原发性牙齿萌出障碍的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 573-580. |
[2] | 黄定明, 张岚, 满毅. 牙保存相关上颌窦底提升术的生物学基础[J]. 国际口腔医学杂志, 2023, 50(3): 251-262. |
[3] | 蒋端,申道南,赵蕾,吴亚菲. 内皮发育调节基因-1与牙周炎相关性的研究进展[J]. 国际口腔医学杂志, 2022, 49(2): 244-248. |
[4] | 伍春兰,唐华,陈军. 成人骨性Ⅱ类高角开牙合患者上下切牙区牙槽骨形态的三维研究[J]. 国际口腔医学杂志, 2021, 48(4): 426-432. |
[5] | 雷双,庾靖君,唐晓琳. 牙龈卟啉单胞菌对不同组织来源血管内皮细胞的作用及机制的研究进展[J]. 国际口腔医学杂志, 2021, 48(1): 23-28. |
[6] | 付世锦,曾刊,李鑫,杨静,汪成林,叶玲. 骨保护素/核因子κB受体活化因子配体影响肺癌细胞下颌骨与股骨转移差异的初步研究[J]. 国际口腔医学杂志, 2020, 47(5): 538-546. |
[7] | 王琳璇,王琦,赵云,米方林. 促红细胞生成素肝细胞激酶受体及其膜结合配体对牙槽骨改建作用的研究进展[J]. 国际口腔医学杂志, 2019, 46(6): 724-729. |
[8] | 高鑫,曾融生. 骨保护素在口腔领域的研究进展[J]. 国际口腔医学杂志, 2019, 46(3): 316-319. |
[9] | 姜懿轩,莫龙义,贾小玥,徐欣,刘程程. 植物雌激素防治牙周炎的研究进展[J]. 国际口腔医学杂志, 2018, 45(5): 571-578. |
[10] | 吴琪, 刘程程, 郑黎薇, 李继遥, 周学东, 徐欣. 肠道微生物调控骨代谢的研究进展[J]. 国际口腔医学杂志, 2017, 44(6): 628-635. |
[11] | 刘双, 李纾. 表观遗传学及其调控与牙周病[J]. 国际口腔医学杂志, 2017, 44(5): 523-527. |
[12] | 安宁, 唐正龙. 甲状旁腺激素调控牙周组织改建的研究进展[J]. 国际口腔医学杂志, 2017, 44(4): 466-470. |
[13] | 苟敏 蔡潇潇. 种植体—基台微间隙对种植体颈部周围骨的影响[J]. 国际口腔医学杂志, 2015, 42(6): 733-738. |
[14] | 王亚斐,刘畅. 力敏感因子对软骨内成骨的调控作用[J]. 国际口腔医学杂志, 2015, 42(5): 615-619. |
[15] | 刘伟,凌均棨. 牙髓干细胞诱导分化为血管内皮细胞的研究进展[J]. 国际口腔医学杂志, 2014, 41(6): 707-711. |
|