国际口腔医学杂志 ›› 2026, Vol. 53 ›› Issue (2): 197-204.doi: 10.7518/gjkq.2026217

• 论著 • 上一篇    

氧化钇添加量对牙科氧化锆陶瓷光学性能的影响

何林峰(),刘飞,沈颉飞()   

  1. 口腔疾病防治全国重点实验室 国家口腔医学中心 口腔疾病国家临床医学研究中心四川大学华西口腔医院修复Ⅱ科 成都 610041
  • 收稿日期:2024-12-04 修回日期:2025-05-28 出版日期:2026-03-01 发布日期:2026-02-13
  • 通讯作者: 沈颉飞
  • 作者简介:何林峰,博士,Email:1151904889@qq.com
  • 基金资助:
    国家重点研发计划(2022YFC2410102)

Effect of yttria doping content on the optical properties of dental zirconia

Linfeng He(),Fei Liu,Jiefei Shen()   

  1. State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Dept. of Prosthodontics II, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Si-chuan, China
  • Received:2024-12-04 Revised:2025-05-28 Online:2026-03-01 Published:2026-02-13
  • Contact: Jiefei Shen
  • Supported by:
    National Key Research and Development Program of China(2022YFC2410102)

摘要:

目的 探究氧化钇添加量对氧化锆的微观结构变化和光学性能的影响。 方法 选择同一品牌的氧化锆材料,分别添加3 mol%(3Y)、4 mol%(4Y)和5 mol%(5Y)的氧化钇预烧结盘,完成样品规格设计、切削和致密化烧结。用于材料微观结构表征的陶瓷样品,烧结后为直径9 mm,厚2 mm的圆片;用于材料的光学性能表征的陶瓷样品,烧结后为6 mm×8 mm、厚0.5~1.0 mm等厚度间隔的方片,共6组(n=5)。使用扫描电子显微镜技术表征材料表面形貌,X射线衍射技术表征材料的晶相结构;使用椭圆偏振仪表征材料的折射率,光谱仪表征材料的透射率和对比度(CR值)。 结果 氧化钇添加量增加,晶体直径增加;四方相比例在4Y组最高(59.49%),5Y组最低(19.46%)。随着氧化钇添加量增加,折射率降低。透射率受到波长和材料厚度显著影响,同一材料的透射率在长波段(705 nm)最高,短波段(435 nm)最低。3Y组与4Y组的透射率小于1%,5Y组的透射率在短波段(435 nm)低于1%,在长波段(705 nm)最高超过10%。CR值受材料厚度的影响较小,3Y和4Y的CR值为0.8±0.1,仅个别组之间的差异有统计学意义;5Y组的CR值为0.4±0.2,与其他两组差异均有统计学意义。 结论 氧化钇添加量较低时,主要促进四方相晶体的生长;而氧化钇添加量较高时,则显著促进立方相晶体的生长。氧化钇的添加量提高到5 mol%时,才能有效提高氧化锆的半透性。

关键词: 氧化锆, 氧化钇, 四方相, 立方相, 光学性能, 折射率, 半透性

Abstract:

Objective This study aims to investigate the effect of yttria doping content on the microstructural changes and optical properties of zirconia. Methods Zirconia materials from the same brand, with yttria additions of 3 mol% (3Y), 4 mol% (4Y), and 5 mol% (5Y), were employed. Presintered discs were prepared, and sample specifications were designed, cut, and densified accordingly. For microstructural characterization, ceramic samples were sintered into circular discs with a diameter of 9 mm and a thickness of 2 mm. For optical performance characterization, ceramic samples were sintered into square plates measuring 6 mm× 8 mm, with thicknesses ranging from 0.5-1.0 mm in equal intervals. A total of 6 groups (n=5) were prepared. Surface morphology was examined using scanning electron microscopy, and the crystal phase proportion was refined via X-ray diffraction. The refractive index was measured with an ellipsometer, and transmittance and the contrast ratio (CR) were evaluated using a spectrophotometer. Results Increasing the yttria doping level resulted in enlarged crystal diameters. Among the groups, 4Y exhibited the largest tetragonal phase proportion (59.49%), and 5Y had the smallest (19.46%). The refractive index decreased with increased yttria doping. Transmittance was substantially influenced by wavelength and material thickness, with long wavelengths (705 nm) achieving the highest transmittance and short wavelengths (435 nm) having the lowest for all materials. The transmittance values of the 3Y and 4Y groups were below 1%. The transmittance of the 5Y group exceeded 10% at long wavelengths (705 nm) and was below 1% at short wavelengths (435 nm). The CR values were minimally affected by thickness. The 3Y and 4Y groups had average CR values of 0.8±0.1, and statistical differences were observed only between select groups. The 5Y group had an average CR value of 0.4±0.2, which was statistically significantly different from those of the other groups. Conclusion Low yttria doping levels promoted the growth of tetragonal-phase crystals, and high yttria levels significantly enhanced the formation of cubic-phase crystals. A doping level of 5 mol% yttria is necessary to effectively improve the translucency of zirconia.

Key words: zirconia, yttria, tetragonal phase, cubic phase, optical property, refractive index, translucency

中图分类号: 

  • R783.1

表 1

3种不同添加量氧化锆陶瓷的预烧结后和终烧结后的物理化学性能"

物理化学参数3Y4Y5Y
氧化钇添加量3 mol%4 mol%5 mol%
预烧结后密度/(g/cm3≥2.80≥2.80≥2.80
预烧结后化学溶解性/(μg/cm2≤100≤100≤100
终烧结收缩率/%19~2219~2219~22
终烧结后密度/(g/cm3≥6.0≥6.0≥6.0
终烧结后化学溶解性/(μg/cm2≤2 000≤ 2 000≤ 2 000
终烧结后维氏硬度/GPa≥12.5≥12.5≥12.5
终烧结后挠曲强度/MPa>900≥900≥500

表 2

3种不同添加量氧化锆陶瓷的烧结进程"

组别烧结阶段升温速率/(℃/min)目标温度/℃升温时间/min保温时间/min总时间/min时间进度/min
3Y起始阶段-20--00
第一阶段109008820108108
第二阶段51 530126120246354
退火阶段-10300123-123477
4Y起始阶段-20--00
第一阶段121 10090-9090
第二阶段1.21 40025010260350
第三阶段21 50050120170520
退火阶段-9300134-134654
5Y起始阶段-20--00
第一阶段121 10090-90904
第二阶段1.21 40025010260350
第三阶段1.61 48050120170520
退火阶段-8.390070-70590

图1

3组YSZ陶瓷表面形貌图和晶体直径统计图 SEM × 30 000A:3Y;B:4Y;C:5Y;D:晶体直径。"

图2

3组YSZ陶瓷 XRD图(A)和晶相比例图(B)"

表 3

3组YSZ陶瓷的折射率表"

组别B值C值D值MSE值
3Y2.167 000 00±0.000 616 690.024 860 00±0.000 426 42-0.000 894 800±0.000 058 5340.996
4Y2.155 000 00±0.000 470 790.022 470 00±0.000 325 58-0.000 445 980±0.000 044 7110.768
5Y2.145 000 00±0.000 415 520.019 400 00±0.000 287 27-0.000 168 870±0.000 027 3590.683

图3

3组YSZ陶瓷在不同波长下的透射率折线图(A、B、C)与统计图(D、E、F)A、D:435 nm;B、E:565 nm;C、F:705 nm;两组间差异有统计学意义,*P<0.05,**P<0.02。"

图4

3组YSZ陶瓷在不同波长下的半透性折线图(A、B、C)和统计图(D、E、F)A、D:435 nm;B、E:565 nm;C、F:705 nm;两组间差异有统计学意义,*P<0.05,**P<0.02。"

[1] Denry I, Kelly JR. State of the art of zirconia for dental applications[J]. Dent Mater, 2008, 24(3): 299-307.
[2] Han MK. Advances and challenges in zirconia-based materials for dental applications[J]. J Korean Ceram Soc, 2024, 61(5): 783-799.
[3] Uasuwan P, Juntavee N, Juntavee A. Flexural strength of novel glass infiltrated monochrome and multilayer high yttrium oxide containing zirconia upon various sintered cooling rates[J]. J Prosthodont, 2024, 33(S1): 47-59.
[4] Reale Reyes A, Dennison JB, Powers JM, et al. Translucency and flexural strength of translucent zirconia ceramics[J]. J Prosthet Dent, 2023, 129(4): 644-649.
[5] Mao L, Kaizer MR, Zhao M, et al. Graded ultra-translucent zirconia (5Y-PSZ) for strength and functionalities[J]. J Dent Res, 2018, 97(11): 1222-1228.
[6] Zhang F, Inokoshi M, Batuk M, et al. Strength, toughness and aging stability of highly-translucent Y-TZP ceramics for dental restorations[J]. Dent Mater, 2016, 32(12): e327-e337.
[7] Zhang Y, Lawn BR. Novel zirconia materials in dentistry[J]. J Dent Res, 2018, 97(2): 140-147.
[8] 万乾炳. 口腔氧化锆修复材料分代之我见[J]. 国际口腔医学杂志, 2021, 48(2): 125-128.
Wan QB. My opinion on the generations of dental zirconia materials[J]. Int J Stomatol, 2021, 48(2): 125-128.
[9] Wang L, Wang K, Sheng Y, et al. The effect of phase contents on the properties of yttria stabilized zirconia dental materials fabricated by stereolitho-graphy-based additive manufacturing[J]. J Mech Behav Biomed Mater, 2024, 150: 106313.
[10] Pabst W, Hostaša J. A closed-form expression approximating the mie solution for the real-in-line transmission of ceramics with spherical inclusions or pores[J]. Ceramics-Silikáty, 2013, 57(2): 151-161.
[11] Pabst W, Hříbalová S. Light scattering models for describing the transmittance of transparent and translucent alumina and zirconia ceramics[J]. J Eur Ceram Soc, 2021, 41(3): 2058-2075.
[12] Jiang L, Liao YM, Wan QB, et al. Effects of sinte-ring temperature and particle size on the translucency of zirconium dioxide dental ceramic[J]. J Mater Sci Mater Med, 2011, 22(11): 2429-2435.
[13] Sen N, Sermet IB, Cinar S. Effect of coloring and sintering on the translucency and biaxial strength of monolithic zirconia[J]. J Prosthet Dent, 2018, 119(2): 308.e1-308.e7.
[14] Zhang F, Vanmeensel K, Batuk M, et al. Highly-translucent, strong and aging-resistant 3Y-TZP ceramics for dental restoration by grain boundary se-gregation[J]. Acta Biomater, 2015, 16: 215-222.
[15] Vult von Steyern P, Bruzell E, Vos L, et al. Sintering temperature accuracy and its effect on translucent yttria-stabilized zirconia: flexural strength, crystal structure, tetragonality and light transmission[J]. Dent Mater, 2022, 38(7): 1099-1107.
[16] Miyagawa Y, Powers JM, O’Brien WJ. Optical pro-perties of direct restorative materials[J]. J Dent Res, 1981, 60(5): 890-894.
[17] Alshahrani AM, Lim CH, Wolff MS, et al. Current speed sintering and high-speed sintering protocols compromise the translucency but not strength of yttria-stabilized zirconia[J]. Dent Mater, 2024, 40(4): 664-673.
[18] Elsaka SE. Optical and mechanical properties of newly developed monolithic multilayer zirconia[J]. J Prosthodont, 2019, 28(1): e279-e284.
[19] Shahmiri R, Standard OC, Hart JN, et al. Optical properties of zirconia ceramics for esthetic dental restorations: a systematic review[J]. J Prosthet Dent, 2018, 119(1): 36-46.
[20] Vasylkiv O, Sakka Y, Skorokhod VV. Hardness and fracture toughness of alumina-doped tetragonal zirconia with different yttria contents[J]. Mater Trans, 2003, 44(10): 2235-2238.
[21] Doğru G, Yılmaz H. Influence of low-temperature degradation on phase transformation and biaxial flexural strength on different high-translucent 4Y-PSZ, 5Y-PSZ, 6Y-PSZ monolithic zirconia[J]. Clin Exp Health Sci, 2024, 14(1): 45-53.
[22] Hříbalová S, Pabst W. Modeling light scattering by spherical pores for calculating the transmittance of transparent ceramics-All you need to know[J]. J Eur Ceram Soc, 2021, 41(4): 2169-2192.
[23] Ebeid K, Wille S, Hamdy A, et al. Effect of changes in sintering parameters on monolithic translucent zirconia[J]. Dent Mater, 2014, 30(12): e419-e424.
[24] Kim MJ, Ahn JS, Kim JH, et al. Effects of the sinte-ring conditions of dental zirconia ceramics on the grain size and translucency[J]. J Adv Prosthodont, 2013, 5(2): 161-166.
[25] Tuncel İ, Turp I, Üşümez A. Evaluation of translucency of monolithic zirconia and framework zirconia materials[J]. J Adv Prosthodont, 2016, 8(3): 181-186.
[26] Ban S. Reliability and properties of core materials for all-ceramic dental restorations[J]. Jpn Dent Sci Rev, 2008, 44(1): 3-21.
[27] Zhang Y. Making yttria-stabilized tetragonal zirconia translucent[J]. Dent Mater, 2014, 30(10): 1195-1203.
[28] Hammoudeh H, Carracho L, Beard C, et al. Effect of different surface and heat treatments on the surface roughness, crystallography, and phase composition of high translucency zirconia for monolithic restorations[J]. J Prosthet Dent, 2024, 131(1): 164.e1-164.e11.
[1] 余杰, 刘劲松. 氧化锆种植体的表面修饰及其对骨整合的影响[J]. 国际口腔医学杂志, 2025, 52(3): 281-295.
[2] 黄博,王剑,张鑫. 口腔修复中氧化锆陶瓷低温老化的评估及解决策略[J]. 国际口腔医学杂志, 2025, 52(2): 169-175.
[3] 姚雪敏,王华,王璐,赵彬. 口腔半透明氧化锆陶瓷粘接效果的影响因素[J]. 国际口腔医学杂志, 2024, 51(4): 450-455.
[4] 曾芳,王剑. 全锆冠美学修复效果的影响因素[J]. 国际口腔医学杂志, 2022, 49(2): 233-238.
[5] 杨光美,王剑. 全锆冠机械性能的研究现状及与临床应用的关系[J]. 国际口腔医学杂志, 2022, 49(1): 79-84.
[6] 黎敏,华成舸,蒋丽. 提高氧化锆陶瓷粘接性能新技术的研究进展[J]. 国际口腔医学杂志, 2021, 48(4): 485-490.
[7] 万乾炳. 口腔氧化锆修复材料分代之我见[J]. 国际口腔医学杂志, 2021, 48(2): 125-128.
[8] 万乾炳. 氧化锆基台的研究现状和临床应用效果[J]. 国际口腔医学杂志, 2018, 45(1): 1-8.
[9] 万乾炳. 关于全锆冠的几个问题[J]. 国际口腔医学杂志, 2018, 45(1): 9-13.
[10] 张雅蓉, 刘洋, 张玲, 于海洋. 不同切端设计的上前牙瓷贴面受载能力的定量研究[J]. 国际口腔医学杂志, 2017, 44(3): 301-303.
[11] 姚陈敏, 周丽群, 黄翠. 前牙磨耗牙色修复材料的选择[J]. 国际口腔医学杂志, 2017, 44(3): 363-367.
[12] 陈济芬,丁宏. 抛光及上釉对氧化锆全冠与釉质间磨耗性能的影响[J]. 国际口腔医学杂志, 2016, 43(2): 165-167.
[13] 林捷1 郑智烽2 卢兆杰1 李秀容2 郑志强1. 后牙氧化锆树脂粘接固定桥的设计和粘接技巧[J]. 国际口腔医学杂志, 2015, 42(6): 624-627.
[14] 王万伟 陈渊华 俞青. 二氧化锆色度和透光性与临床全瓷冠修复[J]. 国际口腔医学杂志, 2015, 42(3): 302-305.
[15] 杜桥 牛光良. 氧化锆的表面粗化和改性[J]. 国际口腔医学杂志, 2015, 42(1): 97-101.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!