国际口腔医学杂志 ›› 2025, Vol. 52 ›› Issue (5): 572-578.doi: 10.7518/gjkq.2025087
Chaoying Lin(),Lan Zhang,Dingming Huang(
)
摘要:
根管治疗术是牙髓根尖周病最有效的治疗方法之一,可控制牙髓根尖周炎症,促进病变愈合,保留天然牙。人工智能技术发展迅速,可高效且准确地获取和处理医学影像和临床医学资料,具有促进口腔医学领域发展的潜能。本文围绕根管治疗术前根管形态识别、治疗难度评估和辅助根管再治疗的决策,术中工作长度确定和试尖片、根充片解读,术后预后预测三方面,简要介绍了人工智能在根管治疗过程中的研究进展,给未来的发展提供一定的参考。
中图分类号:
[1] | 姜葳, 梁景平. 牙髓根尖周病的诊断技术进展概述[J]. 中华口腔医学杂志, 2022, 57(3): 227-232. |
Jiang W, Liang JP. Overview of technical advances in the diagnosis of pulp and periapical diseases[J]. Chin J Stomatol, 2022, 57(3): 227-232. | |
[2] | López-Valverde I, Vignoletti F, Vignoletti G, et al. Long-term tooth survival and success following primary root canal treatment: a 5- to 37-year retrospective observation[J]. Clin Oral Investig, 2023, 27(6): 3233-3244. |
[3] | Duan W, Chen YF, Zhang Q, et al. Refined tooth and pulp segmentation using U-Net in CBCT image[J]. Dentomaxillofac Radiol, 2021, 50(6): 20200251. |
[4] | Tan MH, Cui ZM, Zhong T, et al. A progressive framework for tooth and substructure segmentation from cone-beam CT images[J]. Comput Biol Med, 2024, 169: 107839. |
[5] | Lin X, Fu YJ, Ren GQ, et al. Micro-computed tomography-guided artificial intelligence for pulp ca-vity and tooth segmentation on cone-beam computed tomography[J]. J Endod, 2021, 47(12): 1933-1941. |
[6] | Wang YW, Xia WJ, Yan ZN, et al. Root canal treatment planning by automatic tooth and root canal segmentation in dental CBCT with deep multi-task feature learning[J]. Med Image Anal, 2023, 85: 102750. |
[7] | Ali Ahmad I, Al-Jadaa A. Three root canals in the mesiobuccal root of maxillary molars: case reports and literature review[J]. J Endod, 2014, 40(12): 2087-2094. |
[8] | Hiraiwa T, Ariji Y, Fukuda M, et al. A deep-learning artificial intelligence system for assessment of root morphology of the mandibular first molar on pano-ramic radiography[J]. Dentomaxillofac Radiol, 2019, 48(3): 20180218. |
[9] | Alotaibi BB, Khan KI, Javed MQ, et al. Relationship between apical periodontitis and missed canals in mesio-buccal roots of maxillary molars: CBCT study[J]. J Taibah Univ Med Sci, 2024, 19(1): 18-27. |
[10] | Parker J, Mol A, Rivera EM, et al. CBCT uses in clinical endodontics: the effect of CBCT on the abi-lity to locate MB2 canals in maxillary molars[J]. Int Endod J, 2017, 50(12): 1109-1115. |
[11] | Studebaker B, Hollender L, Mancl L, et al. The incidence of second mesiobuccal canals located in ma-xillary molars with the aid of cone-beam computed tomography[J]. J Endod, 2018, 44(4): 565-570. |
[12] | Albitar L, Zhao TY, Huang C, et al. Artificial intelligence (AI) for detection and localization of unobturated second mesial buccal (MB2) canals in cone-beam computed tomography (CBCT)[J]. Diagnostics, 2022, 12(12): 3214. |
[13] | Duman ŞB, Çelik Özen D, Bayrakdar IŞ, et al. Se-cond mesiobuccal canal segmentation with YOLOv5 architecture using cone beam computed tomography images[J]. Odontology, 2024, 112(2): 552-561. |
[14] | Kato A, Ziegler A, Higuchi N, et al. Aetiology, incidence and morphology of the C-shaped root canal system and its impact on clinical endodontics[J]. Int Endod J, 2014, 47(11): 1012-1033. |
[15] | Jeon SJ, Yun JP, Yeom HG, et al. Deep-learning for predicting C-shaped canals in mandibular second molars on panoramic radiographs[J]. Dentomaxillofac Radiol, 2021, 50(5): 20200513. |
[16] | Zhang LJ, Xu F, Li Y, et al. A lightweight convolutional neural network model with receptive field block for C-shaped root canal detection in mandibular second molars[J]. Sci Rep, 2022, 12(1): 17373. |
[17] | Yang SJ, Kim KD, Kise Y, et al. External validation of the effect of the combined use of object detection for the classification of the C-shaped canal configuration of the mandibular second molar in panoramic radiographs: a multicenter study[J]. J Endod, 2024, 50(5): 627-636. |
[18] | Sherwood AA, Sherwood AI, Setzer FC, et al. A deep learning approach to segment and classify C-shaped canal morphologies in mandibular second molars using cone-beam computed tomography[J]. J Endod, 2021, 47(12): 1907-1916. |
[19] | Yang SJ, Lee H, Jang B, et al. Development and va-lidation of a visually explainable deep learning mo-del for classification of C-shaped canals of the mandibular second molars in periapical and panoramic dental radiographs[J]. J Endod, 2022, 48(7): 914-921. |
[20] | Yuce F, Öziç MÜ, Tassoker M. Detection of pulpal calcifications on bite-wing radiographs using deep learning[J]. Clin Oral Investig, 2023, 27(6): 2679-2689. |
[21] | Altındağ A, Bahrilli S, Çelik Ö, et al. The detection of pulp stones with automatic deep learning in pano-ramic radiographies: an AI pilot study[J]. Diagnostics, 2024, 14(9): 890. |
[22] | 温佳欢, 傅裕杰, 任根强, 等. 基于深度学习的点云补全网络修复上颌磨牙钙化根管的研究[J]. 口腔医学研究, 2023, 39(5): 455-459. |
Wen JH, Fu YJ, Ren GQ, et al. Deep learning-based point cloud completion network for restoration of calcified root canals in maxillary molars[J]. J Oral Sci Res, 2023, 39(5): 455-459. | |
[23] | Essam O, Boyle EL, Whitworth JM, et al. The en-dodontic complexity assessment tool (E-CAT): a di-gital form for assessing root canal treatment case difficulty[J]. Int Endod J, 2021, 54(7): 1189-1199. |
[24] | Mallishery S, Chhatpar P, Banga KS, et al. The precision of case difficulty and referral decisions: an innovative automated approach[J]. Clin Oral Investig, 2020, 24(6): 1909-1915. |
[25] | Karkehabadi H, Khoshbin E, Ghasemi N, et al. Deep learning for determining the difficulty of en-dodontic treatment: a pilot study[J]. BMC Oral Health, 2024, 24(1): 574. |
[26] | Campo L, Aliaga IJ, de Paz JF, et al. Retreatment predictions in odontology by means of CBR Systems[J]. Comput Intell Neurosci, 2016, 2016: 7485250. |
[27] | 黄定明, 谭学莲, 张岚, 等. 根管治疗工作长度确定之惑及解决之道[J]. 华西口腔医学杂志, 2016, 34(2): 109-114. |
Huang DM, Tan XL, Zhang L, et al. Confusion and solution for root canal working length determination[J]. West China J Stomatol, 2016, 34(2): 109-114. | |
[28] | Serna-Peña G, Gomes-Azevedo S, Flores-Treviño J, et al. In vivo evaluation of 3 electronic apex locators: root ZX mini, apex ID, and propex pixi[J]. J Endod, 2020, 46(2): 158-161. |
[29] | Qiao XY, Zhang Z, Chen X. Multifrequency impe-dance method based on neural network for root canal length measurement[J]. Appl Sci, 2020, 10(21): 7430. |
[30] | Saghiri MA, Garcia-Godoy F, Gutmann JL, et al. The reliability of artificial neural network in loca-ting minor apical foramen: a cadaver study[J]. J Endod, 2012, 38(8): 1130-1134. |
[31] | Saghiri MA, Asgar K, Boukani KK, et al. A new approach for locating the minor apical foramen using an artificial neural network[J]. Int Endod J, 2012, 45(3): 257-265. |
[32] | Liang YH, Jiang L, Chen C, et al. The validity of cone-beam computed tomography in measuring root canal length using a gold standard[J]. J Endod, 2013, 39(12): 1607-1610. |
[33] | Çelik B, Genç MZ, Çelik ME. Evaluation of root canal filling length on periapical radiograph using artificial intelligence[J]. Oral Radiol, 2025, 41(1): 102-110. |
[34] | Li YX, Zeng GD, Zhang YF, et al. AGMB-transformer: anatomy-guided multi-branch transformer network for automated evaluation of root canal the-rapy[J]. IEEE J Biomed Health Inform, 2022, 26(4): 1684-1695. |
[35] | Herbst CS, Schwendicke F, Krois J, et al. Association between patient-, tooth- and treatment-level factors and root canal treatment failure: a retrospective longitudinal and machine learning study[J]. J Dent, 2022, 117: 103937. |
[36] | Herbst SR, Herbst CS, Schwendicke F. Preoperative risk assessment does not allow to predict root filling length using machine learning: a longitudinal study[J]. J Dent, 2023, 128: 104378. |
[37] | Bennasar C, García I, Gonzalez-Cid Y, et al. Second opinion for non-surgical root canal treatment prognosis using machine learning models[J]. Diagnostics, 2023, 13(17): 2742. |
[38] | Lee J, Seo H, Choi YJ, et al. An endodontic forecas-ting model based on the analysis of preoperative dental radiographs: a pilot study on an endodontic predictive deep neural network[J]. J Endod, 2023, 49(6): 710-719. |
[39] | Van Nieuwenhuysen JP, D’Hoore W, Leprince JG. What ultimately matters in root canal treatment success and tooth preservation: a 25-year cohort study[J]. Int Endod J, 2023, 56(5): 544-557. |
[40] | Pak JG, White SN. Pain prevalence and severity before, during, and after root canal treatment: a systematic review[J]. J Endod, 2011, 37(4): 429-438. |
[41] | Gao X, Xin X, Li Z, et al. Predicting postoperative pain following root canal treatment by using artificial neural network evaluation[J]. Sci Rep, 2021, 11(1): 17243. |
[42] | Chang WT, Huang HY, Lee TM, et al. Predicting root fracture after root canal treatment and crown installation using deep learning[J]. J Dent Sci, 2024, 19(1): 587-593. |
[1] | 周小洁,侯本祥. 基于深度学习技术诊断龋病方法的研究进展[J]. 国际口腔医学杂志, 2025, 52(5): 579-585. |
[2] | 蒋丽,何飞. 再生性牙髓治疗在成熟恒牙中应用的临床研究进展[J]. 国际口腔医学杂志, 2025, 52(4): 449-455. |
[3] | 齐斌,徐海明,卢志山. 天然植物提取物作为根管冲洗剂的研究进展[J]. 国际口腔医学杂志, 2025, 52(4): 466-472. |
[4] | 孙睿哲,倪前伟,高瞻. 数字化技术在颌面部恶性肿瘤近距离照射治疗中的应用进展[J]. 国际口腔医学杂志, 2025, 52(1): 18-24. |
[5] | 董尚兰,冷沙,郑庆华,张岚,黄定明. 金属基纳米粒子在控制根管感染中的应用[J]. 国际口腔医学杂志, 2024, 51(6): 785-792. |
[6] | 纪寅飞, 张岚, 黄定明. 微创髓腔通路对根管治疗过程的影响[J]. 国际口腔医学杂志, 2024, 51(5): 558-564. |
[7] | 汪云毅,朱珠,张峰. 人工智能在头影测量自动定点算法上的研究进展[J]. 国际口腔医学杂志, 2024, 51(5): 630-641. |
[8] | 陈新月,潘晓予,杨燕,贾媛媛,陈亮. 卷积神经网络在牙体牙髓病学中的应用进展[J]. 国际口腔医学杂志, 2024, 51(4): 483-488. |
[9] | 高宇天,苏勤. 酸性氧化电位水在根管治疗中的研究与应用[J]. 国际口腔医学杂志, 2023, 50(4): 401-406. |
[10] | 朱可石,廖安琪,余优成. 机器学习在口腔种植学中的应用研究进展[J]. 国际口腔医学杂志, 2023, 50(4): 491-498. |
[11] | 林慧平,徐婷,林军. 人工智能在口腔癌和口腔潜在恶性疾病诊断中的研究进展[J]. 国际口腔医学杂志, 2023, 50(2): 138-145. |
[12] | 唐粤亭,代佳琪,董雯萱,王虎,郭际香,游梦. 基于机器学习的牙龄评测研究进展[J]. 国际口腔医学杂志, 2023, 50(2): 146-151. |
[13] | 汪牡丹,宋东哲,黄定明. 开髓洞型对患牙根管治疗术后抗折性能影响的研究进展[J]. 国际口腔医学杂志, 2023, 50(2): 186-194. |
[14] | 王璐璇,侯本祥. 根管内氢氧化钙残留对根管治疗的影响[J]. 国际口腔医学杂志, 2022, 49(3): 367-372. |
[15] | 罗恩. 人工智能正颌外科的探索与临床初步应用[J]. 国际口腔医学杂志, 2022, 49(2): 125-131. |
|