国际口腔医学杂志 ›› 2024, Vol. 51 ›› Issue (6): 772-784.doi: 10.7518/gjkq.2024097

• 综述 • 上一篇    

咬合与人体姿势关系的研究进展

李泽彬1,2(),刘鑫3,王美青1()   

  1. 1.口颌系统重建与再生全国重点实验室;国家口腔疾病临床医学研究中心;陕西省口腔疾病国际联合研究中心 第四军医大学口腔医学院口腔解剖生理学教研室 西安 710032
    2.中国人民解放军南部战区总医院口腔科 广州 510010
    3.中国人民解放军联勤保障部队第九六〇医院口腔科 济南 250031
  • 收稿日期:2024-02-06 修回日期:2024-08-10 出版日期:2024-11-01 发布日期:2024-11-04
  • 通讯作者: 王美青
  • 作者简介:李泽彬,主治医师,硕士,Email:lizebin@fmmu.edu.cn
  • 基金资助:
    空军军医大学军事医学提升计划(2021JSTS29)

Development of research on the association between occlusion and body posture

Zebin Li1,2(),Xin Liu3,Meiqing Wang1()   

  1. 1.State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Dept. of Oral Anatomy and Physiology, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
    2.Dept. of Stomatology, General Hospital of Southern Theatre Command of People’s Liberation Army, Guangzhou 510010, China
    3.Dept. of Stomatology, The 960th Hospital of People’s Liberation Army Joint Logistic Support Force, Jinan 250031, China
  • Received:2024-02-06 Revised:2024-08-10 Online:2024-11-01 Published:2024-11-04
  • Contact: Meiqing Wang
  • Supported by:
    Military Medical Enhancement Program of Air Force Medical University(2021JSTS29)

摘要:

咬合作为咀嚼系统的核心要素之一,不仅可影响口颌系统的功能,而且会影响人体姿势,包括解剖形态和姿势平衡。随着学研究的不断深入,咬合与人体姿势的关系越来越受到重视。目前的研究表明,口颌系统可以通过神经和肌筋膜链的解剖联系与人体姿势产生关联,错畸形、牙齿缺失、咬合接触强度的变化以及咬合干扰等因素均可不同程度地影响人体姿势;同时,利用护齿器或咬合板等工具获得稳定的咬合及口颌状态,能够增强肌肉力量和平衡能力,提升训练水平和竞技成绩。本文就咬合与人体姿势相关性研究作一综述。

关键词: 咬合, 错(牙合), 体态, 姿势平衡, 三叉神经系统

Abstract:

Dental occlusion is one of the pivotal components in the masticatory system. Reports have indicated that the occlusion impacts not only the function of the stomatognathic system, but also the body posture in both postural morphologic and postural balance aspects. With the continuous deepening of occlusion research, the relationship between occlusion and body posture has received increased attention. Studies have shown that the stomatognathic system is associated with body posture through neuroanatomic connections between the trigeminal system and postural modulators, as well as through the anatomical connections between bone and skeletal muscles. Malocclusion, tooth loss, occlusal contact intensity, and occlusal disturbances have all been reported to affect the body posture. Moreover, a stable occlusion and orofacial condition, achieved using tools such as mouthguards or occlusal splint, enhances muscle strength and balance, as well as improves training and athletic performance. In this review, we summarized the studies regarding the association between occlusion and body posture.

Key words: occlusion, malocclusion, posture morphology, posture balance, trigeminal nerve system

中图分类号: 

  • R783

图1

咬合与人体姿势的关联性原理图"

表 1

咬合与人体姿势相关性研究报道汇总"

作者研究对象年龄研究设备及方法研究内容结论
Kibana等[13]8例健康人(男)23~28岁

①肌电仪

②电磁六自由度跟踪仪(Polhmus Co.3 Space-Win)

分析在不同咬合支持条件(牙尖交错位、全牙列板、单侧磨牙区板)下,闭颌肌和胸锁乳突肌在最大紧咬时的肌电活动和头部姿势变化咬合支持与头位之间存在相关性
Yoshino等[14]20例健康人(男12例,女8例)25~31岁六自由度记录装置(Gna-tho-hexagonal)利用咬合板,制作不同咬合接触(左侧磨牙无接触、右侧磨牙无接触、双侧磨牙无接触),对比不同咬合接触下的头部位置变化单侧咬合支持丧失可导致颈部肌肉不协调,从而影响头部位置和身体姿势
Sandoval等[17]

①骨性Ⅱ类错34例

②骨性Ⅲ类错31例

头影测量分析分析颅颈姿势与成人骨性错畸形的关系与骨性Ⅲ类错相比,骨性Ⅱ类错下颌升支和头部旋转的角度更大;下颌升支旋转与颈椎前凸、颅颈姿势存在明显相关性
Oh等[18]

骨性Ⅱ类错146例:

①丹麦人93例,男54例,女

39例

②韩国人53例,男27例,女26例

①12.2岁

②10.8岁

头影测量分析分析骨性Ⅱ类错儿童的颈椎形态、寰椎尺寸和颅面形态的相关性上脊柱形态、尺寸与颅面形态存在明显相关性
Cardinal等[19]

①对照组32例

②试验组26例

①(10.3±2.0)岁

②(10.1±1.9)岁

CBCT影像分析分析健康人与单侧后牙反患者的颈椎C1、C2和C3椎体参数的相关性横向咬合变化与颈椎的位置偏移呈正相关,尤其是C2和C3
Zhang等[20]

①特发性脊柱侧弯58例

②先天性脊柱侧弯48例

③健康对照152例

①14.67岁

②15.25岁

③15.17岁

①影像学检查和测量

②体格检查

③口腔临床检查

分析脊柱侧凸患者错畸形的特点脊柱侧弯患者错畸形发生率高,以先天脊柱侧弯患者最为明显
Lewandowska等[22]

①对照组51例健康人(女)

②试验组60例脊柱侧弯(女)

①(14.3±1.6)岁

②(14.0±1.3)岁

①脊柱侧凸计(Bunnel)

②口腔检查+石膏模型分析

对比健康人与脊柱侧弯患者在安氏错畸形、中线偏移、牙槽骨长度和宽度等方面的差异特发性脊柱侧弯患者具有更高的安氏Ⅱ类错畸形和牙槽骨不对称发育倾向
Piancino等[23]

①对照组58例健康人(男28例,女30例)

②试验组87例单侧后牙反(男44例,女43例)

①9.3~12.8岁

②7.7~10.6岁

①下颌运动轨迹仪(K7-I;Myotronics)

②电子倾斜仪(Spinal Mouse?,Idiag)

对比单侧后牙反与健康人之间、左侧反与右侧反之间脊柱弯曲的差异单侧后牙反、不对称咀嚼模式和脊柱不对称弯曲之间存在相关性
?idlauskien?等[24]94例(男44例,女50例)(11.9±2.1)岁

①头影测量

②石膏模型测量

③耳鼻喉内镜、鼻咽镜检查

④临床检查

分析儿童的错类型、身体姿势和鼻咽阻塞之间的关系∠SNB与驼背姿势之间存在明显相关性,驼背姿势在鼻咽阻塞患者中更常见
Lippold等[25]53例健康人(男21例,女32例)(24.6±9.0)岁

①头影测量分析

②光栅立体摄影(Formric)

分析脊柱姿势(胸椎、脊柱前凸和骨盆倾斜)与颅面形态的相关性下颌位置与身体姿势之间存在相关性
Marchena-Ro-dríguez等[28]189例(男95例,女94例)(7.76±1.05)岁临床检查和测量分析安氏错与Clarke角、FPI之间的相关性Clarke角在Ⅰ、Ⅱ、Ⅲ类错中依次减小,FPI在Ⅰ、Ⅱ、Ⅲ类错中依次增大
Bardellini等[29]60例(男31例,女29例)(10±0.6)岁

①垂直激光线

②稳定性气压计平台(Biopstural System?- CE-0124)

对比正畸治疗前后,头部相对于躯干的位置和足底重力分布的差异正畸治疗后,头部位置发生显著矫正(颈椎C0—C1),足底支持类型的改善明显,体重在足底的分布更加均匀
Cabrera-Do-mínguez等[30]409例健康人(男222例,女187例)(10.85±1.46)岁

①压力测量平台(Neo-plate R)

②髋关节水平仪

③临床检查+测量

分析安氏错畸形与重心分布、FPI、舟状骨高度等参数的相关性安氏Ⅱ类错患者的重心更偏脚掌,仅有左脚的 FPI和右脚的舟状骨高度与错畸形之间存在相关性
Nowak等[32]

①30例安氏Ⅲ类错(男11例,女19例)

②30例安氏Ⅱ类错(男14例,女16例)

③30例安氏Ⅰ类错(男13例,女17例)

①(22.7±2.24)岁

②(23.87±3.9)岁

③(22.63±2.65)岁

压力测量平台(Free-MED Base)对比不同错患者站立的足底压力分布(睁/闭眼)、行走动态平衡等差异在错患者中,咬合影响静态姿势稳定性
Julià?Sánchez等[33]30例健康人(男19例,女11例)(22.9±3.7)岁

①改良的星形偏移平衡测试

②手持式肌张力计(Myo-tonPRO)

③口腔临床检查

对比咬棉卷和咬合接触之间,口颌信息的动态平衡差异和口颌肌的生物力学差异正常咬合接触的情况下,无错的受试者显示出比咬合不正受试者更好的平衡性;咬合特征的存在似乎影响部分口颌肌的生物力学性质
Perinetti等[34]122例健康人(男86例,女36例)(13.1±1.6)岁

①压力测量平台(Bio Postural System)

②临床检查+石膏模型分析

对比健康人在咬合接触和无咬合接触、不同安氏错畸形、不同覆和覆盖中线偏移等情况下的姿势平衡不支持错畸形与身体姿势之间存在临床相关性
Mochida等[35]40 853例老年人(男19 995例,女20 858例)

①65~69岁:14 904例

②70~74岁:12 795例

③75~79岁:8 352例

④80~84岁:3 696例

⑤≥85岁:1 106例

问卷调查分析跌倒与口干、窒息、牙齿状况差、年龄大、受教育程度低、抑郁、自评健康状况差等因素的关联程度牙数较少和未佩戴义齿是老年女性跌倒的独立预测因素
Ito等[36]937例老年人(男430例,女507例)(75.5±4.6)岁

①调查问卷

②口腔检查

分析老年人口腔健康状况与跌倒相关骨折发生率之间的关系口腔健康状况不佳是日本社区老年人发生跌倒相关骨折的危险因素
Michalakis等[37]20例健康人(男14例,女6例)(31.7±3.32)岁压力测量平台 (MatScan)对比无咬合接触、紧咬接触、右侧紧咬接触、左侧紧咬接触情况下,足底重力分布的差异咬合状态与体重在足底左右分布的变化有关,与体重在足底的前后分布变化无关
Oki等[38]

①1组24例(男11例,女13例)

②2组24例(男10例,女14例)

①73岁(IQR为70~78岁)

②73岁(IQR为70~79岁)

①多频率身体成分仪(MC-780 A)

②咬合力测量系统(Dental Prescale Ⅱ)

③咀嚼性能测量系统(Gluco Sensor GS-Ⅱ)

④运动功能分析仪(zaRitz BM-220)

分析有无后牙咬合支持对口腔功能和站立运动的影响天然牙或者可摘义齿的后牙咬合支持可能有助于增强口腔功能和站立运动
Okubo等[39]34例无牙颌患者(男12例,女22例)(75.6±6.1)岁

①稳定仪(Gravicorder GS-10)

②三轴加速度计(MEMSense 3D)

对比佩戴与不佩戴义齿的无牙颌患者,站立和行走姿势控制的差异戴全口义齿可能是一种有效的改善老年人静态和动态平衡和控制的手段
Fujino等[41]12例健康人(男10例,女2例)(28.5±4.64)岁

①压力测量平台(Bertec

4080 S)

②肌电仪(Nihon Kohden)

对比紧咬接触和无咬合接触情况下,身体姿势适应干扰能力的差异自主的紧咬牙接触对身体姿势适应前后姿势扰动起着重要的作用
Hirabayashi等[42]

①试验一:20例(男)

②试验二:20例(男)

①(21.1±0.7)岁

②(21.1±0.4)岁

肌电仪(Blue Sensor,METS)对比以下两种情况下脊柱功能和踝关节背屈时肌电图的差异:①0%、12.5%、25%和50%咬肌收缩力;②无咬合、中等、最大咬合力高强度咬合(≥50%),拮抗肌会同时被激活并增加肌肉力量,促进关节稳定;低强度的咬合(<50%)可增强关节运动能力
Fadillioglu等[43]48例健康人(男23例,女25例)(23.8±2.5)岁

①Posturomed振动平台(Haider-Bioswing)

②肌电仪(Noraxon)

③3D运动捕捉系统(Vicon Motion Systems)

对比不同口颌状态(紧咬牙组、压舌组、习惯性颌位组)的动态平衡差异不同口颌状态对重心向不同方向摇摆的长度、时间等参数均未见明显差异
Valentino等[45]20例健康人20~25岁肌电仪(Myotronic Research Inc,WA398101)通过制造不均衡咬合(棉卷),分析咀嚼肌与胫骨前肌、腓骨长肌、腓肠肌等之间的功能关系右侧磨牙咬合干扰,右侧腓骨长肌和左侧腓肠肌的活动增加;左侧磨牙咬合干扰,左侧腓骨长肌和右侧腓肠肌的活动增加
Maurer-Gru-binger 等[46]725例健康人(男329例,女396例)男(41.16±11.40)岁,女(39.69±11.66)岁压力测量平台(GP MultiSens)对比无咬合接触和咬棉卷之间身体摇摆和体重分布的差异对称的咬棉卷仅会引起身体摇摆和重量分布的微小变化
Tecco等[47]30例健康人(女)(28.5±4.5)岁电子气压计多传感器系统(S.r.l. Via Dora 1-00198 Roma)分析单侧咬合不平衡对行走过程中足底受力的影响单侧棉卷诱导的不平衡咬合可致行走中脚底的负载分布发生变化
Marini等[48]12例健康人(男3例,女9例)(22±1.33)岁

①集成运动分析系统(BTS Spa,EL.I.TE)

②肌电仪

③步态分析平台(Kistler,9281C)

对比试验性咬合干扰前10、2 d与干扰后2 d的运动学参数、动态步态测量和头颈部肌肉表面肌电图活动等参数的差异咬合干扰不会随着时间的推移而显著改变身体姿势的静态和动态参数,只对与下颌位置相关的冠状面运动学参数有很小的影响,并伴有咀嚼肌活动短暂增加
Isaia等[49]25例健康人(男9例,女16例)23~44岁稳定性测量平台(Tecnobody,Prokin-B和MF-Stability)对比睁眼或闭眼、单足或双足站立等情况下,咬与不咬棉球之间的平衡差异未发现错畸形与运动控制的相关性
Herzog等[51]38例(男运动员)(32.87±11.29)岁

①颈椎活动度(Zebris CMS 70 P)

②压力测量平台(Zebris Medical GmbH FDM-T)

对比习惯性咬合与佩戴咬合板的运动员颈椎活动度、姿体平衡的差异佩戴咬合板可能会增加颈椎活动度,并可能提高男性运动员的平衡稳定性
Carbonari 等[52]18例运动员(男11例,女7例)平均23.8岁

①肌电仪(FIAB)

②下颌运动记录仪(Bioket)

③运动素质测评系统(Op-tojump next,Microgate)

④液压测力计(Baseline Hydraulic Hand Dynamometers)

对比运动员单独或联合使用咬合板或Taopatch装置情况下,腓肠肌电、运动轨迹、深蹲运动、反运动跳跃和握力测试等参数的差异单独或联合使用咬合板和Taopatch装置会影响肌肉的力量和平衡
G?ttfert 等[53]91例健康人(男41例,女50例)

男:(34.7±11.4)岁

女:(29.3±12.7)岁

①颈椎活动度(Zebris CMS 70 P)

②压力测量平台(Zebris Medical GmbH FDM-T)

对比佩戴咬合板与习惯性咬合之间颈椎的活动范围和重心稳定性佩戴咬合板,使下颌保持中心关系可以改善平衡稳定性,增加颈椎的运动范围
Hirase等[54]

①对照组:43例(男17例,女26例)

②试验组:45例(男21例,女24例)

①(78.4±7.0)岁

②(79.9±6.9)岁

功能性评估:站立测试、计时起身行走测试和单腿站立测试对比佩戴和不佩戴咬合板的老年人进行阻力训练后,站立测试、计时起身行走测试、单腿站立测试的差异使用咬合板进行阻力训练比不使用咬合板更能有效提高社区老年人的平衡能力
Perinetti[56]26例健康人(男13例,女13例)(26.8±5.3)岁压力测量平台(Lounge Como)对比不同视觉条件下,下颌姿势位和牙尖交错位的姿势平衡参数未发现在相同视觉条件下下颌姿势位和牙尖交错位的姿势平衡存在差异
Scharnweber等[57]87例健康人(男)(25.23±3.49)岁

①压力测量平台(GP MultiSens)

②石膏模型分析

对比牙尖交错位和咬棉卷之间姿势控制和足底压力的差异;分析口颌信息与姿势控制和足底压力的相关性与咬棉卷相比,牙尖交错位增加了冠状面和矢状面的身体摇摆;错畸形等因素对姿势控制或足底压力分布没有影响
Perillo等[58]

①对照组:275例

②错组:736例

③Helkimo指数≥5组:43例

④错+Helkimo指数≥5组:124例

①(14.4±2.5)岁

②(14.1±2.5)岁

③(17.1±1.1)岁

④(17.1±1.8)岁

①临床检查

②摄像+测量

③福田踏步试验

分析咬合特征和Helkimo指数评分与身体姿势参数的相关性不支持儿童和年轻人的错畸形特征以及Helkimo指数≥5与身体姿势存在临床相关性

图2

咬合与人体姿势相关性的思维导图"

1 徐高磊. 人体姿势评估与解剖学分析[M]. 郑州: 郑州大学出版社, 2018: 1.
Xu GL. Human postural assessment and anatomical analysis[M]. Zhengzhou: Zhengzhou University Press, 2018: 1.
2 Ivanenko Y, Gurfinkel VS. Human postural control[J]. Front Neurosci, 2018, 12: 171.
3 华安珂, 冯金升, 孟濬, 等. 站姿稳定性与多感觉整合控制研究进展[J]. 航天医学与医学工程, 2019, 32(2): 183-188.
Hua AK, Feng JS, Meng J, et al. Research progress of human upright posture control and multisensory integration[J]. Space Med Med Eng, 2019, 32(2): 183-188.
4 王美青. (牙合)学[M]. 4版. 北京: 人民卫生出版社, 2022: 59-72, 200-205.
Wang MQ. Occlusion[M]. 4th ed. Beijing: People’s Medical Publishing House, 2022: 59-72, 200-205.
5 王博民, 徐红旗. 人体平衡能力测评方法综述[J]. 中国学校体育, 2016, 3(6): 63-68.
Wang BM, Xu HQ. Review on evaluation methods of the ability of body balance[J]. China School Physic Educat, 2016, 3(6): 63-68.
6 陆阿明, 赵焕彬, 顾耀东. 运动生物力学[M]. 4版. 北京: 高等教育出版社, 2018: 105-111.
Lu AM, Zhao HB, Gu YD. Sports biomechanics[M]. 4th ed. Beijing: Higher Education Press, 2018: 105-111.
7 程珊, 孙继成, 马进, 等. 人体姿势控制能力测量理论及仪器研究现状[J]. 医疗卫生装备, 2020, 41(8): 96-100, 103.
Cheng S, Sun JC, Ma J, et al. Research progress of measurement theory and instrument for human postural control ability[J]. Chin Med Equip J, 2020, 41(8): 96-100, 103.
8 Ringhof S, Stein T, Hellmann D, et al. Effect of jaw clenching on balance recovery: dynamic stability and lower extremity joint kinematics after forward loss of balance[J]. Front Psychol, 2016, 7: 291.
9 Kinjo R, Wada T, Churei H, et al. Development of a wearable mouth guard device for monitoring teeth clenching during exercise[J]. Sensors, 2021, 21(4): 1503.
10 Fadillioglu C, Kanus L, Möhler F, et al. Influence of controlled masticatory muscle activity on dynamic reactive balance[J]. J Oral Rehabil, 2022, 49(3): 327-336.
11 Szczygieł E, Fudacz N, Golec J, et al. The impact of the position of the head on the functioning of the human body: a systematic review[J]. Int J Occup Med Environ Health, 2020, 33(5): 559-568.
12 Johnson MB, Van Emmerik REA. Effect of head orien-tation on postural control during upright stance and forward lean[J]. Motor Control, 2012, 16(1): 81-93.
13 Kibana Y, Ishijima T, Hirai T. Occlusal support and head posture[J]. J Oral Rehabil, 2002, 29(1): 58-63.
14 Yoshino G, Higashi K, Nakamura T. Changes in head position due to occlusal supporting zone loss during clenching[J]. Cranio, 2003, 21(2): 89-98.
15 Zhang YB, Liu K, Shao ZW, et al. The effect of asymmetrical occlusion on surface electromyogra-phic activity in subjects with a chewing side prefe-rence: a preliminary study[J]. Healthcare (Basel), 2023, 11(12): 1718.
16 Wu K, Yan B, Zhang X, et al. Orthodontic treatment of an adult with mandibular deviation and scoliosis[J]. J Clin Orthod, 2020, 54(6): 357-368.
17 Sandoval C, Díaz A, Manríquez G. Relationship between craniocervical posture and skeletal class: a statistical multivariate approach for studying class Ⅱ and class Ⅲ malocclusions[J]. Cranio, 2021, 39(2): 133-140.
18 Oh E, Ahn SJ, Sonnesen L. Ethnic differences in craniofacial and upper spine morphology in children with skeletal class Ⅱ malocclusion[J]. Angle Orthod, 2018, 88(3): 283-291.
19 Cardinal L, da Silva TR, Andujar ALF, et al. Evaluation of the three-dimensional (3D) position of cervical vertebrae in individuals with unilateral posterior crossbite[J]. Clin Oral Investig, 2022, 26(1): 463-469.
20 Zhang H, Ma JB, Zhang ZC, et al. Occlusal deviations in adolescents with idiopathic and congenital scoliosis[J]. Korean J Orthod, 2022, 52(3): 165-171.
21 Gámiz-Bermúdez F, Ibáñez-Vera AJ, Obrero-Gaitán E, et al. Relationship between stomatognathic alterations and idiopathic scoliosis: a systematic review with meta-analysis of observational studies[J]. EFORT Open Rev, 2023, 8(10): 771-780.
22 Lewandowska J, Opydo-Szymaczek J, Mehr K, et al. Bilateral dentoalveolar asymmetries in female patients with adolescent idiopathic scoliosis[J]. Acta Bioeng Biomech, 2019, 21(4): 53-62.
23 Piancino MG, Matacena G, Garagiola U, et al. Association between posterior unilateral functional crossbite and asymmetrical spinal flexion: a prospective study[J]. Heliyon, 2023, 9(3): e14342.
24 Šidlauskienė M, Smailienė D, Lopatienė K, et al. Relationships between malocclusion, body posture, and nasopharyngeal pathology in pre-orthodontic children[J]. Med Sci Monit, 2015, 21: 1765-1773.
25 Lippold C, Danesh G, Schilgen M, et al. Relationship between thoracic, lordotic, and pelvic inclination and craniofacial morphology in adults[J]. Angle Orthod, 2006, 76(5): 779-785.
26 宋艳, 郑坤, 魏浩馨, 等. 足姿指数评估扁平足信度及在3D打印鞋垫中的应用[J]. 中国组织工程研究, 2022, 26(3): 344-349.
Song Y, Zheng K, Wei HX, et al. Reliability of flat feet evaluated by foot posture index and its application in three-dimensional printing insoles[J]. Chin J Tissue Eng Res, 2022, 26(3): 344-349.
27 黄昭, 曲军杰, 孙德麟, 等. 3D打印定制鞋垫治疗儿童扁平足的初步结果[J]. 中国矫形外科杂志, 2023, 31(5): 471-475.
Huang Z, Qu JJ, Sun DL, et al. Preliminary results of 3D printed corrective insoles for the treatment of flat feet in children[J]. Orthoped J China, 2023, 31(5): 471-475.
28 Marchena-Rodríguez A, Moreno-Morales N, Ramí‑ rez-Parga E, et al. Relationship between foot posture and dental malocclusions in children aged 6 to 9 years: a cross-sectional study[J]. Medicine, 2018, 97(19): e0701.
29 Bardellini E, Gulino MG, Fontana S, et al. Can the treatment of dental malocclusions affect the posture in children[J]. J Clin Pediatr Dent, 2022, 46(3): 241-248.
30 Cabrera-Domínguez ME, Domínguez-Reyes A, Pa-bón-Carrasco M, et al. Dental malocclusion and its relation to the Podal system[J]. Front Pediatr, 2021, 9: 654229.
31 Chen BL, Liu P, Xiao FY, et al. Review of the upright balance assessment based on the force plate[J]. Int J Environ Res Public Health, 2021, 18(5): 2696.
32 Nowak M, Golec J, Wieczorek A, et al. Is there a correlation between dental occlusion, postural stabi-lity and selected gait parameters in adults[J]. Int J Environ Res Public Health, 2023, 20(2): 1652.
33 Julià‑Sánchez S, Álvarez-Herms J, Cirer-Sastre R, et al. The influence of dental occlusion on dynamic balance and muscular tone[J]. Front Physiol, 2019, 10: 1626.
34 Perinetti G, Contardo L, Silvestrini-Biavati A, et al. Dental malocclusion and body posture in young subjects: a multiple regression study[J]. Clinics, 2010, 65(7): 689-695.
35 Mochida Y, Yamamoto T, Fuchida S, et al. Does poor oral health status increase the risk of falls: the JAGES project longitudinal study[J]. PLoS One, 2018, 13(2): e0192251.
36 Ito W, Komiyama T, Ohi T, et al. Relationship between oral health and fractures in community-dwel-ling older Japanese adults[J]. J Am Med Dir Assoc, 2021, 22(6): 1184-1189.e1.
37 Michalakis KX, Kamalakidis SN, Pissiotis AL, et al. The effect of clenching and occlusal instability on body weight distribution, assessed by a postural platform[J]. Biomed Res Int, 2019, 2019: 7342541.
38 Oki K, Ogino Y, Takamoto Y, et al. The significance of posterior occlusal support of teeth and removable prostheses in oral functions and standing motion[J]. Int J Environ Res Public Health, 2021, 18(13): 6776.
39 Okubo M, Fujinami Y, Minakuchi S. Effect of complete dentures on body balance during standing and walking in elderly people[J]. J Prosthodont Res, 2010, 54(1): 42-47.
40 Julià‑Sánchez S, Álvarez-Herms J, Burtscher M. Dental occlusion and body balance: a question of environmental constraints[J]. J Oral Rehabil, 2019, 46(4): 388-397.
41 Fujino S, Takahashi T, Ueno T. Influence of voluntary teeth clenching on the stabilization of postural stance disturbed by electrical stimulation of unila-teral lower limb[J]. Gait Posture, 2010, 31(1): 122-125.
42 Hirabayashi R, Edama M, Saito A, et al. Effects of clenching strength on exercise performance: verification using spinal function assessments[J]. Sports Health, 2022, 14(3): 404-414.
43 Fadillioglu C, Kanus L, Möhler F, et al. Influence of controlled stomatognathic motor activity on sway, control and stability of the center of mass during dynamic steady-state balance-an uncontrolled manifold analysis[J]. Front Hum Neurosci, 2022, 16: 868828.
44 Walczyńska-Dragon K, Baron S, Nitecka-Buchta A, et al. Correlation between TMD and cervical spine pain and mobility: is the whole body balance TMJ related[J]. Biomed Res Int, 2014, 2014: 582414.
45 Valentino B, Melito F. Functional relationships between the muscles of mastication and the muscles of the leg. An electromyographic study[J]. Surg Radiol Anat, 1991, 13(1): 33-37.
46 Maurer-Grubinger C, Adjami F, Avaniadi I, et al. Symmetrical dental occlusion blocking-changes of body sway and weight distribution in healthy subjects across 4 age decades[J]. J Occup Med Toxicol, 2021, 16(1): 7.
47 Tecco S, Polimeni A, Saccucci M, et al. Postural loads during walking after an imbalance of occlusion created with unilateral cotton rolls[J]. BMC Res Notes, 2010, 3: 141.
48 Marini I, Gatto MR, Bartolucci ML, et al. Effects of experimental occlusal interference on body posture: an optoelectronic stereophotogrammetric analysis[J]. J Oral Rehabil, 2013, 40(7): 509-518.
49 Isaia B, Ravarotto M, Finotti P, et al. Analysis of dental malocclusion and neuromotor control in young healthy subjects through new evaluation tools[J]. J Funct Morphol Kinesiol, 2019, 4(1): 5.
50 Stamos A, Mills S, Malliaropoulos N, et al. The European Association for Sports Dentistry, Academy for Sports Dentistry, European College of Sports and Exercise Physicians consensus statement on sports dentistry integration in sports medicine[J]. Dent Traumatol, 2020, 36(6): 680-684.
51 Herzog J, Göttfert F, Maurer-Grubinger C, et al. Improvement of cervical spine mobility and stance stability by wearing a custom-made mandibular splint in male recreational athletes[J]. PLoS One, 2022, 17(12): e0278063.
52 Carbonari B, Balducci F, Cesaretti G, et al. Performance, balance and posture variations with occlusal splint and Taopatch® devices: a retrospettive cross-over study[J]. J Sports Med Phys Fitness, 2021, 61(2): 317-323.
53 Göttfert F, Herzog J, Maurer-Grubinger C, et al. Ba-lance stability and cervical spine range of motion while wearing a custom-made mandibular splint with special consideration of the sex[J]. Appl Sci, 2022, 12(22): 11856.
54 Hirase T, Inokuchi S, Matsusaka N, et al. Effects of a resistance training program performed with an interocclusal splint for community-dwelling older adults: a randomized controlled trial[J]. J Phys Ther Sci, 2016, 28(5): 1499-1504.
55 Cao RK, Zhang XH, Xu YF, et al. Influence of wea-ring mouthguards on performance among athletes: a systematic review[J]. J Sci Med Sport, 2023, 26(9): 493-503.
56 Perinetti G. Dental occlusion and body posture: no detectable correlation[J]. Gait Posture, 2006, 24(2): 165-168.
57 Scharnweber B, Adjami F, Schuster G, et al. Inf-luence of dental occlusion on postural control and plantar pressure distribution[J]. Cranio, 2017, 35(6): 358-366.
58 Perillo L, Femminella B, Farronato D, et al. Do ma-locclusion and Helkimo index≥5 correlate with body posture[J]. J Oral Rehabil, 2011, 38(4): 242-252.
59 Lässing J, Pökel C, Lingener L, et al. The influence of customized mouthguards on the muscular activity of the masticatory muscles at maximum bite and motor performance during static and dynamic exercises[J]. Sports Med Open, 2021, 7(1): 64.
60 韩建生, 刘旭阳. 脑神经应用解剖学[M]. 北京: 人民卫生出版社, 2020: 131-137.
Han JS, Liu XY. Applied anatomy of the cranial nerves[M]. Beijing: People’s Medical Publishing House, 2020: 131-137.
61 庞有旺, 张富兴, 李金莲. 大鼠三叉神经中脑核到三叉神经运动核的间接投射通路研究[J]. 神经解剖学杂志, 2016, 32(6): 717-721.
Pang YW, Zhang FX, Li JL. The study of indirect projection pathways from the mesencephalic trige-minal nucleus to the trigeminal motor nucleus of rats[J]. Chin J Neuroanat, 2016, 32(6): 717-721.
62 陈鹏, 李金莲. 三叉神经中脑核的研究进展[J]. 解剖科学进展, 2004, 10(1): 80-85.
Chen P, Li JL. Progress of the studies on the mesencephalic trigeminal nucleus[J]. Prog Anatom Sci, 2004, 10(1): 80-85.
63 Hendelman WJ. 功能神经解剖图谱[M]. 李锐, 许杰华, 李晓青, 译. 西安: 世界图书出版公司, 2019: 72-74, 122.
Hendelman WJ. Atlas of functional neuroanatomy[M]. Translated by Li R, Xu JH,Li XQ. Xi’an: World Publishing Corporation, 2019: 72-74, 122.
64 Liu X, Huang HR, Snutch TP, et al. The superior colliculus: cell types, connectivity, and behavior[J]. Neurosci Bull, 2022, 38(12): 1519-1540.
65 Buisseret-Delmas C, Compoint C, Delfini C, et al. Organisation of reciprocal connections between trigeminal and vestibular nuclei in the rat[J]. J Comp Neurol, 1999, 409(1): 153-168.
66 Lee YK, Moon HJ. Reciprocal influence of masticatory apparatus, craniofacial structure and whole body homeostasis[J]. Med Hypotheses, 2012, 79(6): 761-766.
67 Gangloff P, Perrin PP. Unilateral trigeminal anaesthesia modifies postural control in human subjects[J]. Neurosci Lett, 2002, 330(2): 179-182.
68 Lesondak D. 筋膜[M]. 李哲, 付媛, 宋子凡, 译. 北京: 北京科学技术出版社, 2019: 50-62.
Lesondak D. Fascia[M]. Translated by Li Z, Fu Y, Song ZF. Beijing: Beijing Science and Technology Press, 2019: 50-62.
69 Schleip R, Gabbiani G, Wilke J, et al. Fascia is able to actively contract and may thereby influence musculoskeletal dynamics: a histochemical and mechanographic investigation[J]. Front Physiol, 2019, 10: 336.
70 Dischiavi SL, Wright AA, Hegedus EJ, et al. Biotensegrity and myofascial chains: a global approach to an integrated kinetic chain[J]. Med Hypotheses, 2018, 110: 90-96.
71 金天明. 口腔解剖生理学[M]. 8版. 北京: 人民卫生出版社, 2020: 122-123.
Jin TM. Oral anatomy and physiology[M]. 8th ed. Beijing: People’s Medical Publishing House, 2020: 122-123.
72 Danna-Dos-Santos A, Boonstra TW, Degani AM, et al. Multi-muscle control during bipedal stance: an EMG-EMG analysis approach[J]. Exp Brain Res, 2014, 232(1): 75-87.
73 Michelotti A, Buonocore G, Manzo P, et al. Dental occlusion and posture: an overview[J]. Prog Orthod, 2011, 12(1): 53-58.
[1] 李榕,赵青. 基于颞下颌关节思考成人安氏Ⅱ2分类错 畸形的治疗[J]. 国际口腔医学杂志, 2024, 51(6): 687-698.
[2] 徐书奎,张珊,谢新宇,马文盛. 上颌前方牵引矫治骨性Ⅲ类错畸形远期疗效稳定性的研究进展[J]. 国际口腔医学杂志, 2023, 50(6): 646-652.
[3] 王罗丹,范红. 蝶鞍的形态学特点及其与错畸形的关系[J]. 国际口腔医学杂志, 2023, 50(6): 653-660.
[4] 刘体倩,梁星,刘蔚晴,李晓虹,朱睿. 咬合创伤在牙周炎发生发展中的作用及机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 19-24.
[5] 李如意,罗锋,万乾炳. 下颌运动实时记录系统的原理及其应用进展[J]. 国际口腔医学杂志, 2022, 49(2): 182-189.
[6] 杨赟琪,林阳阳,侯敏. 手术优先模式颌骨稳定性及影响因素研究进展[J]. 国际口腔医学杂志, 2022, 49(2): 227-232.
[7] 郭子源,谢文婷,李文龙,张锡忠. Spee曲线在口腔正畸领域的应用及研究进展[J]. 国际口腔医学杂志, 2021, 48(1): 90-95.
[8] 胡常红. 回归治疗本质的无牙颌修复理念[J]. 国际口腔医学杂志, 2018, 45(6): 621-627.
[9] 黎静, 刘星辰, 李佳园, 李小兵. 稳定咬合板治疗慢性颞下颌关节盘不可复性移位的临床随机对照试验的系统评价[J]. 国际口腔医学杂志, 2017, 44(4): 405-410.
[10] 杨芸,李振,孟翔峰,钱冬冬. 牙列重度磨损咬合重建修复治疗方法的探讨[J]. 国际口腔医学杂志, 2017, 44(2): 148-152.
[11] 刘洋, 赵翰驰. 前牙重度磨损伴关节弹响患者的咬合重建[J]. 国际口腔医学杂志, 2017, 44(1): 11-18.
[12] 姚霜, 刘晓君, 周治, 杨鸘, 季娟娟, 周新, 沈勇. 咬合调整对牙周炎正畸治疗患者牙周状况的影响[J]. 国际口腔医学杂志, 2017, 44(1): 50-54.
[13] 李小兵. 儿童早期肌功能训练与错牙合畸形预防矫治[J]. 国际口腔医学杂志, 2015, 42(3): 249-254.
[14] 许方清,张安翔. 3种正畸粘接材料垫高后牙咬合成功率的研究[J]. 国际口腔医学杂志, 2014, 41(6): 652-654.
[15] 彭德志1综述 常新2审校. 临床治疗深覆中打开咬合的常用方法[J]. 国际口腔医学杂志, 2013, 40(4): 503-507.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!