国际口腔医学杂志 ›› 2021, Vol. 48 ›› Issue (1): 110-118.doi: 10.7518/gjkq.2021025

• 综述 • 上一篇    下一篇

数字化微创技术在牙髓根尖周病学中的应用与进展

王奔,许喆桢,韦曦()   

  1. 中山大学附属口腔医院牙体牙髓病科 中山大学光华口腔医学院 广东省口腔医学重点实验室 广州 510055
  • 收稿日期:2020-05-29 修回日期:2020-10-11 出版日期:2021-01-01 发布日期:2021-01-20
  • 通讯作者: 韦曦
  • 作者简介:王奔,硕士,Email: wangb83@mail2.sysu.edu.cn
  • 基金资助:
    广东省财政高水平医院建设专项资金(174-2018-XMZC-0001-03-0125/A-01)

Application and progress of a digitalized minimally invasive technique in endodontics

Wang Ben,Xu Zhezhen,Wei Xi()   

  1. Dept. of Operative Dentistry and Endodontics, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University & Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
  • Received:2020-05-29 Revised:2020-10-11 Online:2021-01-01 Published:2021-01-20
  • Contact: Xi Wei
  • Supported by:
    This study was supported by Guangdong Financial Fund for High-Caliber Hospital Construction(174-2018-XMZC-0001-03-0125/A-01)

摘要:

微创医疗是现代口腔医学的发展趋势。近年来,数字化技术的出现打破了传统口腔诊疗的局限性,为微创口腔医疗提供了新的思路。数字化微创技术是指将三维重建、三维打印、实时追踪等数字化技术应用于口腔临床中,在阻止疾病发展的基础上,最大化保留健康组织。随着数字化硬件和软件的快速发展,数字化微创技术已逐渐渗透传统牙髓根尖周病诊疗模式,促使牙髓治疗学向更微创、更精准、更高效的方向发展。本文重点阐述锥形束CT、动静态导航技术在牙髓根尖周病学中的应用现状,并对其未来发展趋势进行展望。

关键词: 锥形束CT, 三维打印, 数字化导板, 动态导航系统

Abstract:

Minimally invasive medicine is the trend of modern stomatology. In recent years, the emergence of digital technology has removed the limitations of traditional patterns in dental practice and has introduced novel ideas for minimally invasive dentistry. Digitalized minimally invasive techniques in dental practice include three-dimensional reconstruction, three-dimensional printing, and real-time tracking and are aimed at arresting the development of disease and preserving healthy tissues. Along with the rapid development of digital hardware and software, digitalized minimally invasive techniques have been gradually introduced to traditional processes for making treatment molds in endodontics, making diagnosis and treatment less invasive and more accurate and convenient. The review focuses on the clinical application of cone beam computed tomography, static and dynamic navigation systems in Endodontics together with its prospect for the future.

Key words: cone beam computed tomography, three-dimensional printing, digital template, dynamic navigation system

[1] Paurazas SB, Geist JR, Pink FE , et al. Comparison of diagnostic accuracy of digital imaging by using CCD and CMOS-APS sensors with E-speed film in the detection of periapical bony lesions[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2000,89(3):356-362.
doi: 10.1016/s1079-2104(00)70102-8 pmid: 10710463
[2] D'haese J, Ackhurst J, Wismeijer D , et al. Current state of the art of computer‒guided implant surgery[J]. Periodontol 2000, 2017,73(1):121-133.
[3] Block MS, Emery RW . Static or dynamic navigation for implant placement‒choosing the method of guidance[J]. J Oral Maxillofac Surg, 2016,74(2):269-277.
[4] Anderson J, Wealleans J, Ray J . Endodontic applications of 3D printing[J]. Int Endod J, 2018,51(9):1005-1018.
doi: 10.1111/iej.12917 pmid: 29486052
[5] Gambarini G, Galli M, Stefanelli LV , et al. Endodontic microsurgery using dynamic navigation system: a case report[J]. J Endod, 2019, 45(11): 1397-1402. e6.
[6] Sukegawa S, Kanno T, Shibata A , et al. Use of an intraoperative navigation system for retrieving a broken dental instrument in the mandible: a case report[J]. J Med Case Rep, 2017,11(1):14.
doi: 10.1186/s13256-016-1182-2 pmid: 28088226
[7] Chong BS, Dhesi M, Makdissi J . Computer-aided dynamic navigation: a novel method for guided endodontics[J]. Quintessence Int, 2019,50(3):196-202.
[8] Matherne RP, Angelopoulos C, Kulild JC , et al. Use of cone-beam computed tomography to identify root canal systems in vitro[J]. J Endod, 2008,34(1):87-89.
[9] Patel S, Durack C, Abella F , et al. Cone beam computed tomography in endodontics‒a review[J]. Int Endod J, 2015,48(1):3-15.
[10] 文珊辉, 林梓桐, 朱敏 , 等. 锥形束CT与透明牙染色法对下颌恒切牙根管形态的比较研究[J]. 上海口腔医学, 2016,25(1):6-10.
Wen SH, Lin ZT, Zhu M , et al. Comparative study of root canal morphology of mandibular incisors by cone-beam CT and canal staining and clearing technique[J]. Shanghai J Stomatol, 2016,25(1):6-10.
[11] Abuabara A, Baratto-Filho F, Aguiar anele J, et al. Efficacy of clinical and radiological methods to identify second mesiobuccal canals in maxillary first molars[J]. Acta Odontol Scand, 2013,71(1):205-209.
[12] Durack C, Patel S . The use of cone beam computed tomography in the management of dens invaginatus affecting a strategic tooth in a patient affected by hypodontia: a case report[J]. Int Endod J, 2011,44(5):474-483.
pmid: 21314830
[13] Song CK, Chang HS, Min KS . Endodontic management of supernumerary tooth fused with maxillary first molar by using cone-beam computed tomography[J]. J Endod, 2010,36(11):1901-1904.
[14] 王文铄, 蔡艳玲, 蒋宏伟 , 等. 锥形束CT与导板引导微创开髓精确性的体外研究[J]. 中华口腔医学研究杂志(电子版), 2019,13(3):158-165.
Wang WS, Cai YL, Jiang HW , et al. Accuracy of using cone-beam computed tomography and guided templates for minimally invasive endodontic cavity preparation: an in vitro study[J]. Chin J Stomatol Res (Electron Ed), 2019,13(3):158-165.
[15] 孔戈, 郭春岚, 李珍 . CBCT髓室底3D重建在牙髓根尖周疾病中的应用[J]. 北京口腔医学, 2017,25(1):33-35.
Kong G, Guo CL, Li Z . Application of three-dimensional reconstruction of the floor of pulp chamber by CBCT in endodontics[J]. Beijing J Stomatol, 2017,25(1):33-35.
[16] Yang YM, Guo B, Guo LY , et al. CBCT-aided microscopic and ultrasonic treatment for upper or middle thirds calcified root canals[J]. Biomed Res Int, 2016,2016:4793146.
doi: 10.1155/2016/4793146 pmid: 27525269
[17] Patel S, Brown J, Pimentel T , et al. Cone beam computed tomography in endodontics-a review of the literature[J]. Int Endod J, 2019,52(8):1138-1152.
[18] Gambarini G, Ropini P, Piasecki L , et al. A preliminary assessment of a new dedicated endodontic software for use with CBCT images to evaluate the canal complexity of mandibular molars[J]. Int Endod J, 2018,51(3):259-268.
[19] Patel S, Patel R, Foschi F , et al. The impact of different diagnostic imaging modalities on the evaluation of root canal anatomy and endodontic residents, stress levels: a clinical study[J]. J Endod, 2019,45(4):406-413.
[20] Langeland K, Dowden WE, Tronstad L , et al. Human pulp changes of iatrogenic origin[J]. Oral Surg Oral Med Oral Pathol, 1971,32(6):943-980.
[21] Casadei BA, Lara-Mendes STO, Barbosa CFM , et al. Access to original canal trajectory after deviation and perforation with guided endodontic assistance[J]. Aust Endod J, 2020,46(1):101-106.
[22] Connert T, Krug R, Eggmann F , et al. Guided endodontics versus conventional access cavity preparation: a comparative study on substance loss using 3-dimensional-printed teeth[J]. J Endod, 2019,45(3):327-331.
[23] Buchgreitz J, Buchgreitz M, Bjørndal L . Guided endodontics modified for treating molars by using an intracoronal guide technique[J]. J Endod, 2019,45(6):818-823.
[24] Buchgreitz J, Buchgreitz M, Mortensen D , et al. Guided access cavity preparation using cone-beam computed tomography and optical surface scans‒an ex vivo study[J]. Int Endod J, 2016,49(8):790-795.
pmid: 26201367
[25] Connert T, Zehnder MS, Weiger R , et al. Microguided endodontics: accuracy of a miniaturized technique for apically extended access cavity preparation in anterior teeth[J]. J Endod, 2017,43(5):787-790.
pmid: 28292595
[26] Buchgreitz J, Buchgreitz M, Bjørndal L . Guided root canal preparation using cone beam computed tomography and optical surface scans‒an observational study of pulp space obliteration and drill path depth in 50 patients[J]. Int Endod J, 2019,52(5):559-568.
[27] Gallacher A, Ali R, Bhakta S . Dens invaginatus: diagnosis and management strategies[J]. Br Dent J, 2016,221(7):383-387.
pmid: 27713460
[28] Zubizarreta-Macho Á, Ferreiroa A, Rico-Romano C , et al. Diagnosis and endodontic treatment of type Ⅱ dens invaginatus by using cone-beam computed tomography and splint guides for cavity access: a case report[J]. J Am Dent Assoc, 2015,146(4):266-270.
doi: 10.1016/j.adaj.2014.11.021 pmid: 25819658
[29] Zubizarreta-Macho Á, Ferreiroa A, Agustín-Panadero R , et al. Endodontic re-treatment and restorative treatment of a dens invaginatus type Ⅱ through new technologies[J]. J Clin Exp Dent, 2019,11(6):e570-e576.
pmid: 31346380
[30] Mena-Álvarez J, Rico-Romano C, Lobo-Galindo AB , et al. Endodontic treatment of dens evaginatus by performing a splint guided access cavity[J]. J Esthet Restor Dent, 2017,29(6):396-402.
doi: 10.1111/jerd.12314 pmid: 28681488
[31] Zubizarreta-Macho Á, Muñoz AP, Deglow ER , et al. Accuracy of computer-aided dynamic navigation compared to computer-aided static procedure for endodontic access cavities: an in vitro study[J]. J Clin Med, 2020,9(1):E129.
doi: 10.3390/jcm9010129 pmid: 31906598
[32] Block MS, Emery RW, Cullum DR , et al. Implant placement is more accurate using dynamic navigation[J]. J Oral Maxillofac Surg, 2017,75(7):1377-1386.
doi: 10.1016/j.joms.2017.02.026 pmid: 28384461
[33] Emery RW, Merritt SA, Lank K , et al. Accuracy of dynamic navigation for dental implant placement-model-based evaluation[J]. J Oral Implantol, 2016,42(5):399-405.
doi: 10.1563/aaid-joi-D-16-00025 pmid: 27267658
[34] Bender IB, Seltzer S.Roentgenographic and direct observation of experimental lesions in bone: Ⅱ.1961[J]. J Endod,2003, 29(11): 707-712; discussion 701.
doi: 10.1097/00004770-200311000-00006 pmid: 14651275
[35] Goldman M, Pearson AH, Darzenta N . Reliability of radiographic interpretations[J]. Oral Surg Oral Med Oral Pathol, 1974,38(2):287-293.
[36] Halse A, Molven O, Fristad I . Diagnosing periapical lesions‒disagreement and borderline cases[J]. Int Endod J, 2002,35(8):703-709.
doi: 10.1046/j.1365-2591.2002.00552.x pmid: 12196224
[37] Gao Y, Haapasalo M, Shen Y , et al. Development of virtual simulation platform for investigation of the radiographic features of periapical bone lesion[J]. J Endod, 2010,36(8):1404-1409.
doi: 10.1016/j.joen.2010.04.003 pmid: 20647106
[38] Uraba S, Ebihara A, Komatsu K , et al. Ability of cone-beam computed tomography to detect periapical lesions that were not detected by periapical radiography: a retrospective assessment according to tooth group[J]. J Endod, 2016,42(8):1186-1190.
doi: 10.1016/j.joen.2016.04.026 pmid: 27372162
[39] Torabinejad M, Rice DD, Maktabi O , et al. Prevalence and size of periapical radiolucencies using cone-beam computed tomography in teeth without apparent intraoral radiographic lesions: a new periapical index with a clinical recommendation[J]. J Endod, 2018,44(3):389-394.
doi: 10.1016/j.joen.2017.11.015 pmid: 29395115
[40] Davies A, Patel S, Foschi F , et al. The detection of periapical pathoses using digital periapical radiography and cone beam computed tomography in endodontically retreated teeth‒part 2: a 1 year post-treatment follow-up[J]. Int Endod J, 2016,49(7):623-635.
doi: 10.1111/iej.12500 pmid: 26174351
[41] Curtis DM, VanderWeele RA, Ray JJ, et al. Clinician-centered outcomes assessment of retreatment and endodontic microsurgery using cone-beam computed tomographic volumetric analysis[J]. J Endod, 2018,44(8):1251-1256.
pmid: 29970237
[42] Kanagasingam S, Lim CX, Yong CP , et al. Diagnostic accuracy of periapical radiography and cone beam computed tomography in detecting apical periodontitis using histopathological findings as a reference standard[J]. Int Endod J, 2017,50(5):417-426.
doi: 10.1111/iej.12650 pmid: 27063209
[43] Kruse C, Spin-Neto R, Evar Kraft DC , et al. Diagnostic accuracy of cone beam computed tomography used for assessment of apical periodontitis: an ex vivo histopathological study on human cadavers[J]. Int Endod J, 2019,52(4):439-450.
[44] de Paula-Silva FW, Wu MK, Leonardo MR , et al. Accuracy of periapical radiography and cone-beam computed tomography scans in diagnosing apical periodontitis using histopathological findings as a gold standard[J]. J Endod, 2009,35(7):1009-1012.
doi: 10.1016/j.joen.2009.04.006 pmid: 19567324
[45] 凌均棨 . 数字技术开辟牙体牙髓创新之路[J]. 中华口腔医学杂志, 2016,51(4):210-214.
Ling JQ . Overall digitalization: leading innovation of endodontics in big data era[J]. Chin J Stomatol, 2016,51(4):210-214.
[46] Ordinola-Zapata R, Bramante CM, Duarte MH , et al. The influence of cone-beam computed tomography and periapical radiographic evaluation on the assessment of periapical bone destruction in dog's teeth[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2011,112(2):272-279.
[47] Ramis-Alario A, Tarazona-Alvarez B, Cervera-Ballester J , et al. Comparison of diagnostic accuracy between periapical and panoramic radiographs and cone beam computed tomography in measuring the periapical area of teeth scheduled for periapical surgery. A cross-sectional study[J]. J Clin Exp Dent, 2019,11(8):e732-e738.
doi: 10.4317/jced.55986 pmid: 31598202
[48] Liang YH, Jiang L, Gao XJ , et al. Detection and measurement of artificial periapical lesions by cone-beam computed tomography[J]. Int Endod J, 2014,47(4):332-338.
doi: 10.1111/iej.12148 pmid: 23815501
[49] Bornstein MM, Lauber R, Sendi P , et al. Comparison of periapical radiography and limited cone-beam computed tomography in mandibular molars for analysis of anatomical landmarks before apical surgery[J]. J Endod, 2011,37(2):151-157.
doi: 10.1016/j.joen.2010.11.014 pmid: 21238794
[50] von Arx T, Friedli M, Sendi P , et al. Location and dimensions of the mental foramen: a radiographic analysis by using cone-beam computed tomography[J]. J Endod, 2013,39(12):1522-1528.
doi: 10.1016/j.joen.2013.07.033 pmid: 24238440
[51] Ahn SY, Kim NH, Kim S , et al. Computer-aided design/computer-aided manufacturing-guided endodontic surgery: guided osteotomy and apex localization in a mandibular molar with a thick buccal bone plate[J]. J Endod, 2018,44(4):665-670.
doi: 10.1016/j.joen.2017.12.009 pmid: 29358006
[52] Giacomino CM, Ray JJ, Wealleans JA . Targeted endodontic microsurgery: a novel approach to anatomically challenging scenarios using 3-dimensional-printed guides and trephine burs-a report of 3 cases[J]. J Endod, 2018,44(4):671-677.
doi: 10.1016/j.joen.2017.12.019 pmid: 29426644
[53] Popowicz W, Palatyńska-Ulatowska A, Kohli MR . Targeted endodontic microsurgery: computed tomography-based guided stent approach with platelet-rich fibrin graft: a report of 2 cases[J]. J Endod, 2019,45(12):1535-1542.
doi: 10.1016/j.joen.2019.08.012 pmid: 31606146
[54] 杨雪超, 赵世勇, 江千舟 , 等. 三维打印导板辅助下的微创根尖手术新方法[J]. 口腔医学研究, 2016,32(9):944-948.
Yang XC, Zhao SY, Jiang QZ , et al. A new method for minimally invasive apical surgery with the aid of three-dimensional printed template[J]. J Oral Sci Res, 2016,32(9):944-948.
[55] Shah P, Chong BS . 3D imaging, 3D printing and 3D virtual planning in endodontics[J]. Clin Oral Invest, 2018,22(2):641-654.
[56] Madarati AA, Hunter MJ, Dummer PMH . Management of intracanal separated instruments[J]. J Endod, 2013,39(5):569-581.
doi: 10.1016/j.joen.2012.12.033 pmid: 23611371
[57] Gandevivala A, Parekh B, Poplai G , et al. Surgical removal of fractured endodontic instrument in the periapex of mandibular first molar[J]. J Int Oral Health, 2014,6(4):85-88.
pmid: 25214740
[58] Natiella JR, Armitage JE, Greene GW . The replantation and transplantation of teeth. A review[J]. Oral Surg Oral Med Oral Pathol, 1970,29(3):397-419.
doi: 10.1016/0030-4220(70)90143-x pmid: 4983973
[59] Schwartz O, Bergmann P, Klausen B . Autotransplantation of human teeth. A life-table analysis of prognostic factors[J]. Int J Oral Surg, 1985,14(3):245-258.
doi: 10.1016/s0300-9785(85)80036-3 pmid: 3926669
[60] Lee SJ, Jung IY, Lee CY , et al. Clinical application of computer-aided rapid prototyping for tooth transplantation[J]. Dent Traumatol, 2001,17(3):114-119.
doi: 10.1034/j.1600-9657.2001.017003114.x pmid: 11499760
[61] Verweij JP, Jongkees FA, Anssari Moin D , et al. Autotransplantation of teeth using computer-aided rapid prototyping of a three-dimensional replica of the donor tooth: a systematic literature review[J]. Int J Oral Maxillofac Surg, 2017,46(11):1466-1474.
doi: 10.1016/j.ijom.2017.04.008 pmid: 28478868
[62] Ashkenazi M, Shashua D, Kegen S , et al. Computerized three-dimensional design for accurate orienting and dimensioning artificial dental socket for tooth autotransplantation[J]. Quintessence Int, 2018,49(8):663-671.
pmid: 30027172
[63] Wu Y, Chen JM, Xie FP , et al. Simulation of postoperative occlusion and direction in autotransplantation of teeth: application of computer-aided design and digital surgical templates[J]. Br J Oral Maxillofac Surg, 2019,57(7):638-643.
pmid: 31174895
[64] Kim K, Choi HS, Pang NS . Clinical application of 3D technology for tooth autotransplantation: a case report[J]. Aust Endod J, 2019,45(1):122-128.
doi: 10.1111/aej.12260 pmid: 29450945
[65] Oh S, Kim S, Lo HS , et al. Virtual simulation of autotransplantation using 3-dimensional printing prototyping model and computer-assisted design program[J]. J Endod, 2018,44(12):1883-1888.
doi: 10.1016/j.joen.2018.08.010 pmid: 30477670
[66] Tamse A . Vertical root fractures in endodontically treated teeth: diagnostic signs and clinical management[J]. Endod Top, 2006,13(1):84-94.
[67] Walton RE . Vertical root fracture: factors related to identification[J]. J Am Dent Assoc, 2017,148(2):100-105.
doi: 10.1016/j.adaj.2016.11.014 pmid: 28129797
[68] Talwar S, Utneja S, Nawal RR , et al. Role of cone-beam computed tomography in diagnosis of vertical root fractures: a systematic review and meta-analysis[J]. J Endod, 2016,42(1):12-24.
doi: 10.1016/j.joen.2015.09.012 pmid: 26699923
[69] Makeeva IM, Byakova SF, Novozhilova NE , et al. Detection of artificially induced vertical root fractures of different widths by cone beam computed tomography in vitro and in vivo[J]. Int Endod J, 2016,49(10):980-989.
doi: 10.1111/iej.12549 pmid: 26358615
[70] Byakova SF, Novozhilova NE, Makeeva IM , et al. The accuracy of CBCT for the detection and diagnosis of vertical root fractures in vivo[J]. Int Endod J, 2019,52(9):1255-1263.
pmid: 30861149
[71] Zhang L, Wang TM, Cao Y , et al. In vivo detection of subtle vertical root fracture in endodontically treated teeth by cone-beam computed tomography[J]. J Endod, 2019,45(7):856-862.
doi: 10.1016/j.joen.2019.03.006 pmid: 31030978
[72] Lima TF, Gamba TO, Zaia AA , et al. Evaluation of cone beam computed tomography and periapical radiography in the diagnosis of root resorption[J]. Aust Dent J, 2016,61(4):425-431.
doi: 10.1111/adj.12407 pmid: 26780040
本文编辑: 吴爱华
doi: 10.1111/adj.12407 pmid: 26780040
[1] 杨雨楠,刘鹏,王虎,游梦. 上颌窦黏膜增厚的锥形束CT影像分析[J]. 国际口腔医学杂志, 2023, 50(3): 302-307.
[2] 汤芝伟,高莺. 靶向牙髓显微外科技术的应用与进展[J]. 国际口腔医学杂志, 2022, 49(6): 678-683.
[3] 蔡娉娉,卓盈颖,林捷,郑志强. 计算机辅助技术在纤维桩拆除中的应用[J]. 国际口腔医学杂志, 2022, 49(6): 731-736.
[4] 吴文智,冯达兴,陈垂壮,周丽鹃. 海口地区下颌第一恒磨牙近中中央根管发生率及相关因素[J]. 国际口腔医学杂志, 2022, 49(4): 420-425.
[5] 庞瑜,刘显,王了. 数字化导板在埋伏多生牙拔除中的应用[J]. 国际口腔医学杂志, 2022, 49(4): 448-452.
[6] 叶泽林,刘璐,龙虎,游梦. 弯曲前牙的影像评价及治疗的研究进展[J]. 国际口腔医学杂志, 2022, 49(2): 173-181.
[7] 田浩楠,林敏,谢丛蔓,任嫒姝. 上颌腭侧阻生尖牙与寰椎后桥相关性的锥形束CT研究[J]. 国际口腔医学杂志, 2021, 48(5): 536-540.
[8] 施丹妮,杨鑫,吴建勇. 锥形束CT三维头影测量参考坐标系的研究进展[J]. 国际口腔医学杂志, 2021, 48(4): 398-404.
[9] 丁张帆,郭陟永,苗诚,李春洁,宣鸣,王晓毅,张壮. 基于锥形束CT的三维可视化技术在颌骨囊性病变手术中的应用[J]. 国际口腔医学杂志, 2021, 48(2): 180-186.
[10] 唐蓓,赵文俊,王虎,郑广宁,游梦. 根管超填导致下牙槽神经损伤2例[J]. 国际口腔医学杂志, 2020, 47(3): 293-296.
[11] 章婷婷,胡常红,彭燕,周文翘,张慧聪,刘蝶. 300例不同年龄段有牙颌人群上唇软组织侧貌的锥形束CT三维测量分析[J]. 国际口腔医学杂志, 2020, 47(2): 182-188.
[12] 田田,张志宏,刘红红. 牙种植动态导航配准方式对配准精度的影响[J]. 国际口腔医学杂志, 2020, 47(2): 196-201.
[13] 王春林,刘从华,宋思吟,周丽淑,林丽佳. 运用锥形束CT诊断上下颌横向发育不调的研究进展[J]. 国际口腔医学杂志, 2020, 47(1): 121-124.
[14] 黎祺, 黄少宏. 岭南地区广府民系人群下颌第二恒磨牙牙根和根管形态的锥形束CT研究[J]. 国际口腔医学杂志, 2019, 46(6): 640-649.
[15] 曹焜,李家锋,孙玉华,鲍强,卢秋宁,唐巍. 下颌下窝的锥形束CT影像分析[J]. 国际口腔医学杂志, 2019, 46(2): 209-212.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张新春. 桩冠修复与无髓牙的保护[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 王昆润. 长期单侧鼻呼吸对头颅发育有不利影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[3] 彭国光. 颈淋巴清扫术中颈交感神经干的解剖变异[J]. 国际口腔医学杂志, 1999, 26(05): .
[4] 杨凯. 淋巴化疗的药物运载系统及其应用现状[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 康非吾. 种植义齿下部结构生物力学研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 柴枫. 可摘局部义齿用Co-Cr合金的激光焊接[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 孟姝,吴亚菲,杨禾. 伴放线放线杆菌产生的细胞致死膨胀毒素及其与牙周病的关系[J]. 国际口腔医学杂志, 2005, 32(06): 458 -460 .
[8] 费晓露,丁一,徐屹. 牙周可疑致病菌对口腔黏膜上皮的粘附和侵入[J]. 国际口腔医学杂志, 2005, 32(06): 452 -454 .
[9] 赵兴福,黄晓晶. 变形链球菌蛋白组学研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .
[10] 庞莉苹,姚江武. 抛光和上釉对陶瓷表面粗糙度、挠曲强度及磨损性能的影响[J]. 国际口腔医学杂志, 2008, 35(S1): .