国际口腔医学杂志 ›› 2021, Vol. 48 ›› Issue (1): 110-118.doi: 10.7518/gjkq.2021025
摘要:
微创医疗是现代口腔医学的发展趋势。近年来,数字化技术的出现打破了传统口腔诊疗的局限性,为微创口腔医疗提供了新的思路。数字化微创技术是指将三维重建、三维打印、实时追踪等数字化技术应用于口腔临床中,在阻止疾病发展的基础上,最大化保留健康组织。随着数字化硬件和软件的快速发展,数字化微创技术已逐渐渗透传统牙髓根尖周病诊疗模式,促使牙髓治疗学向更微创、更精准、更高效的方向发展。本文重点阐述锥形束CT、动静态导航技术在牙髓根尖周病学中的应用现状,并对其未来发展趋势进行展望。
[1] |
Paurazas SB, Geist JR, Pink FE , et al. Comparison of diagnostic accuracy of digital imaging by using CCD and CMOS-APS sensors with E-speed film in the detection of periapical bony lesions[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2000,89(3):356-362.
doi: 10.1016/s1079-2104(00)70102-8 pmid: 10710463 |
[2] | D'haese J, Ackhurst J, Wismeijer D , et al. Current state of the art of computer‒guided implant surgery[J]. Periodontol 2000, 2017,73(1):121-133. |
[3] | Block MS, Emery RW . Static or dynamic navigation for implant placement‒choosing the method of guidance[J]. J Oral Maxillofac Surg, 2016,74(2):269-277. |
[4] |
Anderson J, Wealleans J, Ray J . Endodontic applications of 3D printing[J]. Int Endod J, 2018,51(9):1005-1018.
doi: 10.1111/iej.12917 pmid: 29486052 |
[5] | Gambarini G, Galli M, Stefanelli LV , et al. Endodontic microsurgery using dynamic navigation system: a case report[J]. J Endod, 2019, 45(11): 1397-1402. e6. |
[6] |
Sukegawa S, Kanno T, Shibata A , et al. Use of an intraoperative navigation system for retrieving a broken dental instrument in the mandible: a case report[J]. J Med Case Rep, 2017,11(1):14.
doi: 10.1186/s13256-016-1182-2 pmid: 28088226 |
[7] | Chong BS, Dhesi M, Makdissi J . Computer-aided dynamic navigation: a novel method for guided endodontics[J]. Quintessence Int, 2019,50(3):196-202. |
[8] | Matherne RP, Angelopoulos C, Kulild JC , et al. Use of cone-beam computed tomography to identify root canal systems in vitro[J]. J Endod, 2008,34(1):87-89. |
[9] | Patel S, Durack C, Abella F , et al. Cone beam computed tomography in endodontics‒a review[J]. Int Endod J, 2015,48(1):3-15. |
[10] | 文珊辉, 林梓桐, 朱敏 , 等. 锥形束CT与透明牙染色法对下颌恒切牙根管形态的比较研究[J]. 上海口腔医学, 2016,25(1):6-10. |
Wen SH, Lin ZT, Zhu M , et al. Comparative study of root canal morphology of mandibular incisors by cone-beam CT and canal staining and clearing technique[J]. Shanghai J Stomatol, 2016,25(1):6-10. | |
[11] | Abuabara A, Baratto-Filho F, Aguiar anele J, et al. Efficacy of clinical and radiological methods to identify second mesiobuccal canals in maxillary first molars[J]. Acta Odontol Scand, 2013,71(1):205-209. |
[12] |
Durack C, Patel S . The use of cone beam computed tomography in the management of dens invaginatus affecting a strategic tooth in a patient affected by hypodontia: a case report[J]. Int Endod J, 2011,44(5):474-483.
pmid: 21314830 |
[13] | Song CK, Chang HS, Min KS . Endodontic management of supernumerary tooth fused with maxillary first molar by using cone-beam computed tomography[J]. J Endod, 2010,36(11):1901-1904. |
[14] | 王文铄, 蔡艳玲, 蒋宏伟 , 等. 锥形束CT与导板引导微创开髓精确性的体外研究[J]. 中华口腔医学研究杂志(电子版), 2019,13(3):158-165. |
Wang WS, Cai YL, Jiang HW , et al. Accuracy of using cone-beam computed tomography and guided templates for minimally invasive endodontic cavity preparation: an in vitro study[J]. Chin J Stomatol Res (Electron Ed), 2019,13(3):158-165. | |
[15] | 孔戈, 郭春岚, 李珍 . CBCT髓室底3D重建在牙髓根尖周疾病中的应用[J]. 北京口腔医学, 2017,25(1):33-35. |
Kong G, Guo CL, Li Z . Application of three-dimensional reconstruction of the floor of pulp chamber by CBCT in endodontics[J]. Beijing J Stomatol, 2017,25(1):33-35. | |
[16] |
Yang YM, Guo B, Guo LY , et al. CBCT-aided microscopic and ultrasonic treatment for upper or middle thirds calcified root canals[J]. Biomed Res Int, 2016,2016:4793146.
doi: 10.1155/2016/4793146 pmid: 27525269 |
[17] | Patel S, Brown J, Pimentel T , et al. Cone beam computed tomography in endodontics-a review of the literature[J]. Int Endod J, 2019,52(8):1138-1152. |
[18] | Gambarini G, Ropini P, Piasecki L , et al. A preliminary assessment of a new dedicated endodontic software for use with CBCT images to evaluate the canal complexity of mandibular molars[J]. Int Endod J, 2018,51(3):259-268. |
[19] | Patel S, Patel R, Foschi F , et al. The impact of different diagnostic imaging modalities on the evaluation of root canal anatomy and endodontic residents, stress levels: a clinical study[J]. J Endod, 2019,45(4):406-413. |
[20] | Langeland K, Dowden WE, Tronstad L , et al. Human pulp changes of iatrogenic origin[J]. Oral Surg Oral Med Oral Pathol, 1971,32(6):943-980. |
[21] | Casadei BA, Lara-Mendes STO, Barbosa CFM , et al. Access to original canal trajectory after deviation and perforation with guided endodontic assistance[J]. Aust Endod J, 2020,46(1):101-106. |
[22] | Connert T, Krug R, Eggmann F , et al. Guided endodontics versus conventional access cavity preparation: a comparative study on substance loss using 3-dimensional-printed teeth[J]. J Endod, 2019,45(3):327-331. |
[23] | Buchgreitz J, Buchgreitz M, Bjørndal L . Guided endodontics modified for treating molars by using an intracoronal guide technique[J]. J Endod, 2019,45(6):818-823. |
[24] |
Buchgreitz J, Buchgreitz M, Mortensen D , et al. Guided access cavity preparation using cone-beam computed tomography and optical surface scans‒an ex vivo study[J]. Int Endod J, 2016,49(8):790-795.
pmid: 26201367 |
[25] |
Connert T, Zehnder MS, Weiger R , et al. Microguided endodontics: accuracy of a miniaturized technique for apically extended access cavity preparation in anterior teeth[J]. J Endod, 2017,43(5):787-790.
pmid: 28292595 |
[26] | Buchgreitz J, Buchgreitz M, Bjørndal L . Guided root canal preparation using cone beam computed tomography and optical surface scans‒an observational study of pulp space obliteration and drill path depth in 50 patients[J]. Int Endod J, 2019,52(5):559-568. |
[27] |
Gallacher A, Ali R, Bhakta S . Dens invaginatus: diagnosis and management strategies[J]. Br Dent J, 2016,221(7):383-387.
pmid: 27713460 |
[28] |
Zubizarreta-Macho Á, Ferreiroa A, Rico-Romano C , et al. Diagnosis and endodontic treatment of type Ⅱ dens invaginatus by using cone-beam computed tomography and splint guides for cavity access: a case report[J]. J Am Dent Assoc, 2015,146(4):266-270.
doi: 10.1016/j.adaj.2014.11.021 pmid: 25819658 |
[29] |
Zubizarreta-Macho Á, Ferreiroa A, Agustín-Panadero R , et al. Endodontic re-treatment and restorative treatment of a dens invaginatus type Ⅱ through new technologies[J]. J Clin Exp Dent, 2019,11(6):e570-e576.
pmid: 31346380 |
[30] |
Mena-Álvarez J, Rico-Romano C, Lobo-Galindo AB , et al. Endodontic treatment of dens evaginatus by performing a splint guided access cavity[J]. J Esthet Restor Dent, 2017,29(6):396-402.
doi: 10.1111/jerd.12314 pmid: 28681488 |
[31] |
Zubizarreta-Macho Á, Muñoz AP, Deglow ER , et al. Accuracy of computer-aided dynamic navigation compared to computer-aided static procedure for endodontic access cavities: an in vitro study[J]. J Clin Med, 2020,9(1):E129.
doi: 10.3390/jcm9010129 pmid: 31906598 |
[32] |
Block MS, Emery RW, Cullum DR , et al. Implant placement is more accurate using dynamic navigation[J]. J Oral Maxillofac Surg, 2017,75(7):1377-1386.
doi: 10.1016/j.joms.2017.02.026 pmid: 28384461 |
[33] |
Emery RW, Merritt SA, Lank K , et al. Accuracy of dynamic navigation for dental implant placement-model-based evaluation[J]. J Oral Implantol, 2016,42(5):399-405.
doi: 10.1563/aaid-joi-D-16-00025 pmid: 27267658 |
[34] |
Bender IB, Seltzer S.Roentgenographic and direct observation of experimental lesions in bone: Ⅱ.1961[J]. J Endod,2003, 29(11): 707-712; discussion 701.
doi: 10.1097/00004770-200311000-00006 pmid: 14651275 |
[35] | Goldman M, Pearson AH, Darzenta N . Reliability of radiographic interpretations[J]. Oral Surg Oral Med Oral Pathol, 1974,38(2):287-293. |
[36] |
Halse A, Molven O, Fristad I . Diagnosing periapical lesions‒disagreement and borderline cases[J]. Int Endod J, 2002,35(8):703-709.
doi: 10.1046/j.1365-2591.2002.00552.x pmid: 12196224 |
[37] |
Gao Y, Haapasalo M, Shen Y , et al. Development of virtual simulation platform for investigation of the radiographic features of periapical bone lesion[J]. J Endod, 2010,36(8):1404-1409.
doi: 10.1016/j.joen.2010.04.003 pmid: 20647106 |
[38] |
Uraba S, Ebihara A, Komatsu K , et al. Ability of cone-beam computed tomography to detect periapical lesions that were not detected by periapical radiography: a retrospective assessment according to tooth group[J]. J Endod, 2016,42(8):1186-1190.
doi: 10.1016/j.joen.2016.04.026 pmid: 27372162 |
[39] |
Torabinejad M, Rice DD, Maktabi O , et al. Prevalence and size of periapical radiolucencies using cone-beam computed tomography in teeth without apparent intraoral radiographic lesions: a new periapical index with a clinical recommendation[J]. J Endod, 2018,44(3):389-394.
doi: 10.1016/j.joen.2017.11.015 pmid: 29395115 |
[40] |
Davies A, Patel S, Foschi F , et al. The detection of periapical pathoses using digital periapical radiography and cone beam computed tomography in endodontically retreated teeth‒part 2: a 1 year post-treatment follow-up[J]. Int Endod J, 2016,49(7):623-635.
doi: 10.1111/iej.12500 pmid: 26174351 |
[41] |
Curtis DM, VanderWeele RA, Ray JJ, et al. Clinician-centered outcomes assessment of retreatment and endodontic microsurgery using cone-beam computed tomographic volumetric analysis[J]. J Endod, 2018,44(8):1251-1256.
pmid: 29970237 |
[42] |
Kanagasingam S, Lim CX, Yong CP , et al. Diagnostic accuracy of periapical radiography and cone beam computed tomography in detecting apical periodontitis using histopathological findings as a reference standard[J]. Int Endod J, 2017,50(5):417-426.
doi: 10.1111/iej.12650 pmid: 27063209 |
[43] | Kruse C, Spin-Neto R, Evar Kraft DC , et al. Diagnostic accuracy of cone beam computed tomography used for assessment of apical periodontitis: an ex vivo histopathological study on human cadavers[J]. Int Endod J, 2019,52(4):439-450. |
[44] |
de Paula-Silva FW, Wu MK, Leonardo MR , et al. Accuracy of periapical radiography and cone-beam computed tomography scans in diagnosing apical periodontitis using histopathological findings as a gold standard[J]. J Endod, 2009,35(7):1009-1012.
doi: 10.1016/j.joen.2009.04.006 pmid: 19567324 |
[45] | 凌均棨 . 数字技术开辟牙体牙髓创新之路[J]. 中华口腔医学杂志, 2016,51(4):210-214. |
Ling JQ . Overall digitalization: leading innovation of endodontics in big data era[J]. Chin J Stomatol, 2016,51(4):210-214. | |
[46] | Ordinola-Zapata R, Bramante CM, Duarte MH , et al. The influence of cone-beam computed tomography and periapical radiographic evaluation on the assessment of periapical bone destruction in dog's teeth[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2011,112(2):272-279. |
[47] |
Ramis-Alario A, Tarazona-Alvarez B, Cervera-Ballester J , et al. Comparison of diagnostic accuracy between periapical and panoramic radiographs and cone beam computed tomography in measuring the periapical area of teeth scheduled for periapical surgery. A cross-sectional study[J]. J Clin Exp Dent, 2019,11(8):e732-e738.
doi: 10.4317/jced.55986 pmid: 31598202 |
[48] |
Liang YH, Jiang L, Gao XJ , et al. Detection and measurement of artificial periapical lesions by cone-beam computed tomography[J]. Int Endod J, 2014,47(4):332-338.
doi: 10.1111/iej.12148 pmid: 23815501 |
[49] |
Bornstein MM, Lauber R, Sendi P , et al. Comparison of periapical radiography and limited cone-beam computed tomography in mandibular molars for analysis of anatomical landmarks before apical surgery[J]. J Endod, 2011,37(2):151-157.
doi: 10.1016/j.joen.2010.11.014 pmid: 21238794 |
[50] |
von Arx T, Friedli M, Sendi P , et al. Location and dimensions of the mental foramen: a radiographic analysis by using cone-beam computed tomography[J]. J Endod, 2013,39(12):1522-1528.
doi: 10.1016/j.joen.2013.07.033 pmid: 24238440 |
[51] |
Ahn SY, Kim NH, Kim S , et al. Computer-aided design/computer-aided manufacturing-guided endodontic surgery: guided osteotomy and apex localization in a mandibular molar with a thick buccal bone plate[J]. J Endod, 2018,44(4):665-670.
doi: 10.1016/j.joen.2017.12.009 pmid: 29358006 |
[52] |
Giacomino CM, Ray JJ, Wealleans JA . Targeted endodontic microsurgery: a novel approach to anatomically challenging scenarios using 3-dimensional-printed guides and trephine burs-a report of 3 cases[J]. J Endod, 2018,44(4):671-677.
doi: 10.1016/j.joen.2017.12.019 pmid: 29426644 |
[53] |
Popowicz W, Palatyńska-Ulatowska A, Kohli MR . Targeted endodontic microsurgery: computed tomography-based guided stent approach with platelet-rich fibrin graft: a report of 2 cases[J]. J Endod, 2019,45(12):1535-1542.
doi: 10.1016/j.joen.2019.08.012 pmid: 31606146 |
[54] | 杨雪超, 赵世勇, 江千舟 , 等. 三维打印导板辅助下的微创根尖手术新方法[J]. 口腔医学研究, 2016,32(9):944-948. |
Yang XC, Zhao SY, Jiang QZ , et al. A new method for minimally invasive apical surgery with the aid of three-dimensional printed template[J]. J Oral Sci Res, 2016,32(9):944-948. | |
[55] | Shah P, Chong BS . 3D imaging, 3D printing and 3D virtual planning in endodontics[J]. Clin Oral Invest, 2018,22(2):641-654. |
[56] |
Madarati AA, Hunter MJ, Dummer PMH . Management of intracanal separated instruments[J]. J Endod, 2013,39(5):569-581.
doi: 10.1016/j.joen.2012.12.033 pmid: 23611371 |
[57] |
Gandevivala A, Parekh B, Poplai G , et al. Surgical removal of fractured endodontic instrument in the periapex of mandibular first molar[J]. J Int Oral Health, 2014,6(4):85-88.
pmid: 25214740 |
[58] |
Natiella JR, Armitage JE, Greene GW . The replantation and transplantation of teeth. A review[J]. Oral Surg Oral Med Oral Pathol, 1970,29(3):397-419.
doi: 10.1016/0030-4220(70)90143-x pmid: 4983973 |
[59] |
Schwartz O, Bergmann P, Klausen B . Autotransplantation of human teeth. A life-table analysis of prognostic factors[J]. Int J Oral Surg, 1985,14(3):245-258.
doi: 10.1016/s0300-9785(85)80036-3 pmid: 3926669 |
[60] |
Lee SJ, Jung IY, Lee CY , et al. Clinical application of computer-aided rapid prototyping for tooth transplantation[J]. Dent Traumatol, 2001,17(3):114-119.
doi: 10.1034/j.1600-9657.2001.017003114.x pmid: 11499760 |
[61] |
Verweij JP, Jongkees FA, Anssari Moin D , et al. Autotransplantation of teeth using computer-aided rapid prototyping of a three-dimensional replica of the donor tooth: a systematic literature review[J]. Int J Oral Maxillofac Surg, 2017,46(11):1466-1474.
doi: 10.1016/j.ijom.2017.04.008 pmid: 28478868 |
[62] |
Ashkenazi M, Shashua D, Kegen S , et al. Computerized three-dimensional design for accurate orienting and dimensioning artificial dental socket for tooth autotransplantation[J]. Quintessence Int, 2018,49(8):663-671.
pmid: 30027172 |
[63] |
Wu Y, Chen JM, Xie FP , et al. Simulation of postoperative occlusion and direction in autotransplantation of teeth: application of computer-aided design and digital surgical templates[J]. Br J Oral Maxillofac Surg, 2019,57(7):638-643.
pmid: 31174895 |
[64] |
Kim K, Choi HS, Pang NS . Clinical application of 3D technology for tooth autotransplantation: a case report[J]. Aust Endod J, 2019,45(1):122-128.
doi: 10.1111/aej.12260 pmid: 29450945 |
[65] |
Oh S, Kim S, Lo HS , et al. Virtual simulation of autotransplantation using 3-dimensional printing prototyping model and computer-assisted design program[J]. J Endod, 2018,44(12):1883-1888.
doi: 10.1016/j.joen.2018.08.010 pmid: 30477670 |
[66] | Tamse A . Vertical root fractures in endodontically treated teeth: diagnostic signs and clinical management[J]. Endod Top, 2006,13(1):84-94. |
[67] |
Walton RE . Vertical root fracture: factors related to identification[J]. J Am Dent Assoc, 2017,148(2):100-105.
doi: 10.1016/j.adaj.2016.11.014 pmid: 28129797 |
[68] |
Talwar S, Utneja S, Nawal RR , et al. Role of cone-beam computed tomography in diagnosis of vertical root fractures: a systematic review and meta-analysis[J]. J Endod, 2016,42(1):12-24.
doi: 10.1016/j.joen.2015.09.012 pmid: 26699923 |
[69] |
Makeeva IM, Byakova SF, Novozhilova NE , et al. Detection of artificially induced vertical root fractures of different widths by cone beam computed tomography in vitro and in vivo[J]. Int Endod J, 2016,49(10):980-989.
doi: 10.1111/iej.12549 pmid: 26358615 |
[70] |
Byakova SF, Novozhilova NE, Makeeva IM , et al. The accuracy of CBCT for the detection and diagnosis of vertical root fractures in vivo[J]. Int Endod J, 2019,52(9):1255-1263.
pmid: 30861149 |
[71] |
Zhang L, Wang TM, Cao Y , et al. In vivo detection of subtle vertical root fracture in endodontically treated teeth by cone-beam computed tomography[J]. J Endod, 2019,45(7):856-862.
doi: 10.1016/j.joen.2019.03.006 pmid: 31030978 |
[72] |
Lima TF, Gamba TO, Zaia AA , et al. Evaluation of cone beam computed tomography and periapical radiography in the diagnosis of root resorption[J]. Aust Dent J, 2016,61(4):425-431.
doi: 10.1111/adj.12407 pmid: 26780040 |
本文编辑: 吴爱华
doi: 10.1111/adj.12407 pmid: 26780040 |
[1] | 杨雨楠,刘鹏,王虎,游梦. 上颌窦黏膜增厚的锥形束CT影像分析[J]. 国际口腔医学杂志, 2023, 50(3): 302-307. |
[2] | 汤芝伟,高莺. 靶向牙髓显微外科技术的应用与进展[J]. 国际口腔医学杂志, 2022, 49(6): 678-683. |
[3] | 蔡娉娉,卓盈颖,林捷,郑志强. 计算机辅助技术在纤维桩拆除中的应用[J]. 国际口腔医学杂志, 2022, 49(6): 731-736. |
[4] | 吴文智,冯达兴,陈垂壮,周丽鹃. 海口地区下颌第一恒磨牙近中中央根管发生率及相关因素[J]. 国际口腔医学杂志, 2022, 49(4): 420-425. |
[5] | 庞瑜,刘显,王了. 数字化导板在埋伏多生牙拔除中的应用[J]. 国际口腔医学杂志, 2022, 49(4): 448-452. |
[6] | 叶泽林,刘璐,龙虎,游梦. 弯曲前牙的影像评价及治疗的研究进展[J]. 国际口腔医学杂志, 2022, 49(2): 173-181. |
[7] | 田浩楠,林敏,谢丛蔓,任嫒姝. 上颌腭侧阻生尖牙与寰椎后桥相关性的锥形束CT研究[J]. 国际口腔医学杂志, 2021, 48(5): 536-540. |
[8] | 施丹妮,杨鑫,吴建勇. 锥形束CT三维头影测量参考坐标系的研究进展[J]. 国际口腔医学杂志, 2021, 48(4): 398-404. |
[9] | 丁张帆,郭陟永,苗诚,李春洁,宣鸣,王晓毅,张壮. 基于锥形束CT的三维可视化技术在颌骨囊性病变手术中的应用[J]. 国际口腔医学杂志, 2021, 48(2): 180-186. |
[10] | 唐蓓,赵文俊,王虎,郑广宁,游梦. 根管超填导致下牙槽神经损伤2例[J]. 国际口腔医学杂志, 2020, 47(3): 293-296. |
[11] | 章婷婷,胡常红,彭燕,周文翘,张慧聪,刘蝶. 300例不同年龄段有牙颌人群上唇软组织侧貌的锥形束CT三维测量分析[J]. 国际口腔医学杂志, 2020, 47(2): 182-188. |
[12] | 田田,张志宏,刘红红. 牙种植动态导航配准方式对配准精度的影响[J]. 国际口腔医学杂志, 2020, 47(2): 196-201. |
[13] | 王春林,刘从华,宋思吟,周丽淑,林丽佳. 运用锥形束CT诊断上下颌横向发育不调的研究进展[J]. 国际口腔医学杂志, 2020, 47(1): 121-124. |
[14] | 黎祺, 黄少宏. 岭南地区广府民系人群下颌第二恒磨牙牙根和根管形态的锥形束CT研究[J]. 国际口腔医学杂志, 2019, 46(6): 640-649. |
[15] | 曹焜,李家锋,孙玉华,鲍强,卢秋宁,唐巍. 下颌下窝的锥形束CT影像分析[J]. 国际口腔医学杂志, 2019, 46(2): 209-212. |
|