Inter J Stomatol ›› 2017, Vol. 44 ›› Issue (5): 614-618.doi: 10.7518/gjkq.2017.05.024

• Reviews • Previous Articles    

Research progress on the crosstalk between Hippo/YAP signaling pathway and cell proliferation-related signaling pathways

Wang Qi, Chen Xiyan, Wen Yong.   

  1. Dept. of Implantology, Hospital of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan 250012, China
  • Received:2016-11-28 Revised:2017-03-07 Online:2017-09-01 Published:2017-09-01
  • Supported by:
    ; This study was supported by National Natural Science Foundation of China(81300885), Shandong Provincial key research and development program(2016GSF201115, 2016GSF201220) and Young Scholars Program of Shandong University (2015WLJH53).

Abstract: Hippo/YAP signaling pathway was discovered in Drosophila firstly. It is highly conserved in mammals and can regulate cell proliferation and apoptosis directly or indirectly, which can keep the homeostasis and size of organs in vivo. YAP can act as a transcription coactivator in Hippo signaling pathway with some moleculars in phosphatidylinositol 3-kinase(PI3K)/protein kinase B(AKT), Wnt/β-catenin and extracellular signal-regulated kinases(ERK) 1/2. Hippo pathway is involved in the complex signaling pathway net, as a crosstalk between Hippo and other proliferation-related signaling pathways exists, which regulates cell proliferation. In this study, we summarize the research progress of the effect and mechanism of this crosstalk between coactivator YAP in Hippo signaling pathway and signaling pathways-controlled proliferation.

Key words: Hippo/YAP signaling pathway, phosphatidylinositol 3-kinase/protein kinase B, Wnt/β, -catenin, extracellular signal regulated kinase, proliferation

CLC Number: 

  • Q786

TrendMD: 
[1] Mo JS, Park HW, Guan KL. The Hippo signaling pathway in stem cell biology and cancer[J]. EMBO Rep, 2014, 15(6):642-656.
[2] Yu FX, Zhao B, Guan KL. Hippo pathway in organ size control, tissue homeostasis, and cancer[J]. Cell, 2015, 163(4):811-828.
[3] Johnson R, Halder G. The two faces of Hippo: tar-geting the Hippo pathway for regenerative medicine and cancer treatment[J]. Nat Rev Drug Discov, 2014, 13(1):63-79.
[4] Heinemann A, Cullinane C, De Paoli-Iseppi R, et al. Combining BET and HDAC inhibitors synergisti-cally induces apoptosis of melanoma and suppresses AKT and YAP signaling[J]. Oncotarget, 2015, 6(25): 21507-21521.
[5] Lin Z, Zhou P, von Gise A, et al. Pi3kcb links Hippo-YAP and PI3K-AKT signaling pathways to promote cardiomyocyte proliferation and survival[J]. Circ Res, 2015, 116(1):35-45.
[6] Straßburger K, Tiebe M, Pinna F, et al. Insulin/IGF signaling drives cell proliferation in part via Yorkie/YAP[J]. Dev Biol, 2012, 367(2):187-196.
[7] Li XJ, Leem SH, Park MH, et al. Regulation of YAP through an Akt-dependent process by 3,3’-diindolyl-methane in human colon cancer cells[J]. Int J Oncol, 2013, 43(6):1992-1998.
[8] You B, Yang YL, Xu Z, et al. Inhibition of ERK1/2 down-regulates the Hippo/YAP signaling pathway in human NSCLC cells[J]. Oncotarget, 2015, 6(6): 4357-4368.
[9] Yu S, Cai X, Wu C, et al. Adhesion glycoprotein CD44 functions as an upstream regulator of a net-work connecting ERK, AKT and Hippo-YAP path-ways in cancer progression[J]. Oncotarget, 2015, 6 (5):2951-2965.
[10] Suzuki A, Pelikan RC, Iwata J. WNT/β-catenin signaling regulates multiple steps of myogenesis by regulating step-specific targets[J]. Mol Cell Biol, 2015, 35(10):1763-1776.
[11] Saito-Diaz K, Chen TW, Wang X, et al. The way Wnt works: components and mechanism[J]. Growth Factors, 2013, 31(1):1-31.
[12] Barry ER, Morikawa T, Butler BL, et al. Restriction of intestinal stem cell expansion and the regenerative response by YAP[J]. Nature, 2013, 493(7430):106- 110.
[13] Heallen T, Zhang M, Wang J, et al. Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size[J]. Science, 2011, 332 (6028):458-461.
[14] Rosenbluh J, Nijhawan D, Cox AG, et al. β-Catenin-driven cancers require a YAP1 transcriptional com-plex for survival and tumorigenesis[J]. Cell, 2012, 151(7):1457-1473.
[15] Varelas X, Wrana JL. Coordinating developmental signaling: novel roles for the Hippo pathway[J]. Trends Cell Biol, 2012, 22(2):88-96.
[16] Hatzis P, van der Flier LG, van Driel MA, et al. Genome-wide pattern of TCF7L2/TCF4 chromatin occupancy in colorectal cancer cells[J]. Mol Cell Biol, 2008, 28(8):2732-2744.
[17] Konsavage WM Jr, Kyler SL, Rennoll SA, et al. Wnt/β-catenin signaling regulates Yes-associated protein(YAP) gene expression in colorectal carcinoma cells[J]. J Biol Chem, 2012, 287(15):11730-11739.
[18] Barry ER, Morikawa T, Butler BL, et al. Restriction of intestinal stem cell expansion and the regenerative response by YAP[J]. Nature, 2013, 493(7430):106- 110.
[19] Wang J, Park JS, Wei Y, et al. TRIB2 acts down-stream of Wnt/TCF in liver cancer cells to regulate YAP and C/EBPα function[J]. Mol Cell, 2013, 51 (2):211-225.
[20] Hussey GS, Chaudhury A, Dawson AE, et al. Identi-fication of an mRNP complex regulating tumori-genesis at the translational elongation step[J]. Mol Cell, 2011, 41(4):419-431.
[21] Xie Q, Chen J, Feng H, et al. YAP/TEAD-mediated transcription controls cellular senescence[J]. Cancer Res, 2013, 73(12):3615-3624.
[22] Varelas X, Sakuma R, Samavarchi-Tehrani P, et al. TAZ controls Smad nucleocytoplasmic shuttling and regulates human embryonic stem-cell self-renewal [J]. Nat Cell Biol, 2008, 10(7):837-848.
[23] Fujii M, Toyoda T, Nakanishi H, et al. TGF-β syner-gizes with defects in the Hippo pathway to stimulate human malignant mesothelioma growth[J]. J Exp Med, 2012, 209(3):479-494.
[24] Xia Y, Chang T, Wang Y, et al. YAP promotes ovarian cancer cell tumorigenesis and is indicative of a poor prognosis for ovarian cancer patients[J]. PLoS One, 2014, 9(3):e91770.
[25] Shi Y, Massagué J. Mechanisms of TGF-β signaling from cell membrane to the nucleus[J]. Cell, 2003, 113(6):685-700.
[26] Tsukazaki T, Chiang TA, Davison AF, et al. SARA, a FYVE domain protein that recruits Smad2 to the TGFβ receptor[J]. Cell, 1998, 95(6):779-791.
[27] Dobolyi A, Vincze C, Pál G, et al. The neuroprotec-tive functions of transforming growth factor beta proteins[J]. Int J Mol Sci, 2012, 13(7): 8219-8258.
[28] Hayashi H, Abdollah S, Qiu Y, et al. The MAD-related protein Smad7 associates with the TGFβ receptor and functions as an antagonist of TGFβ signaling[J]. Cell, 1997, 89(7):1165-1173.
[29] Ferrigno O, Lallemand F, Verrecchia F, et al. Yes-associated protein(YAP65) interacts with Smad7 and potentiates its inhibitory activity against TGF-β/Smad signaling[J]. Oncogene, 2002, 21(32):4879-4884.
[30] Piersma B, Bank RA, Boersema M. Signaling in fib-rosis: TGF-β, WNT, and YAP/TAZ converge[J]. Front Med(Lausanne), 2015, 2:59.
[1] Zhou Jinkuo,Zhang Jinhong,Shi Xiaojing,Liu Guangshun,Jiang Lei,Liu Qianfeng. Influences of long noncoding RNA small nucleolar RNA host gene 22 on the cell proliferation, invasion and migration of oral squamous carcinoma cells by regulating microRNA-27b-3p [J]. Int J Stomatol, 2024, 51(1): 52-59.
[2] Luo Xiao,Cai Shengqing,Shi Bing,Li Chenghao.. Investigation of the mechanism of 2,3,7,8-tetrachlorodiphenyl dioxin-induced cleft palate mice model [J]. Int J Stomatol, 2022, 49(3): 317-323.
[3] Xiong Menglin,Wu Long,Ma Li,Zhao Jin. Role of transforming growth factor-β2 in promoting the proliferation and differentiation of dental pulp stem cells [J]. Int J Stomatol, 2021, 48(6): 635-639.
[4] Liu Juan,Chen Bin,Yan Fuhua. Effects of platelet-rich plasma and concentrated growth factor on the proliferation and osteogenic differentiation of human periodontal cells [J]. Int J Stomatol, 2021, 48(5): 520-527.
[5] Li Huili,Fang Changyun,Su Zheng. Effects of arecoline on proliferation and migration of human buccal mucosal fibroblasts in vitro [J]. Int J Stomatol, 2020, 47(1): 32-36.
[6] Zeng Kan,Li Xin,Wang Chenglin,Yang Jing,Ye Ling. Effects of bone microenvironment cells on tumor bone metastasis [J]. Int J Stomatol, 2020, 47(1): 95-101.
[7] Mei Hongxiang,Zhang Yidan,Zhang Chenghao,Liu Enyan,Chen Hao,Zhao Zhihe,Liao Wen. Effect of epigallocatechin-3-gallate on stem cell proliferation and osteogenic differentiation [J]. Int J Stomatol, 2019, 46(4): 431-436.
[8] Yuxuan Yang,Haixia Zhang,Shuang Wang. Biological function of amelogenin during periodontal regeneration [J]. Inter J Stomatol, 2019, 46(2): 191-196.
[9] Yuanyuan Li,Bin Cheng,Yun Wang. Effects of long non-coding RNA lnc-p26090 on the glycolysis and proliferation in oral squamous cell carcinoma [J]. Inter J Stomatol, 2018, 45(6): 628-634.
[10] Zhiqiang Wang,Yali Liu,Lijuan Ma,Lan Yang,Ruoyu Wang,Shuting Gao. Effects of salidroside on proliferation, apoptosis, cycle and migration of human tongue cancer CAL-27 cells [J]. Inter J Stomatol, 2018, 45(6): 678-685.
[11] Zhan Yeming, Zhang Mingzhu. Research progress on the relevance between drug-induced gingival overgrowth and cell proliferation and apoptosis [J]. Inter J Stomatol, 2018, 45(2): 199-203.
[12] Fang Hongzhi, Yang Hui, Shao Meiying, Hu Tao. The effects and underlying mechanism of lysophosphatidic acid in β-catenin nuclear translocation of dental pulp cells [J]. Inter J Stomatol, 2018, 45(1): 26-31.
[13] Chen Tian, Bai Ding. Effect of sclerostin on cementogenesis and its mechanism [J]. Inter J Stomatol, 2016, 43(3): 333-337.
[14] Cheng Qun, Yang Minghua, Chen Bin, Liu Juan,Yan Fuhua. Effect of Er:YAG laser irradiation on the cell proliferation and migration of human periodontal ligament cells [J]. Inter J Stomatol, 2015, 42(2): 135-139.
[15] Pang Xiaoxiao, Li Chenghao, Shi Bing. Effects of β-catenin and its role in the occurrence of palate [J]. Inter J Stomatol, 2015, 42(2): 243-247.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 458 -460 .
[8] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 452 -454 .
[9] . [J]. Inter J Stomatol, 2008, 35(S1): .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .