Inter J Stomatol ›› 2016, Vol. 43 ›› Issue (2): 223-227.doi: 10.7518/gjkq.2016.02.024

Previous Articles     Next Articles

Research progress on oral bacterial adhesion mechanism

Zheng Sainan, Jiang Li, Li Wei   

  1. State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China)
  • Received:2015-06-01 Revised:2015-12-16 Online:2016-03-01 Published:2016-03-01

Abstract: Oral bacterial adhesion mechanism is one of the focus studies in the research on oral microbiology and ecology. In recent years, with the improvement of molecular biology, the study of mechanism of oral bacteria adhesion has exhibited considerable progress at the molecular level. The adhesion protein-receptors, fimbriae, and exopolysaccharides on bacterial surface are responsible for the coaggregation of bacteria and adhesion of bacteria to teeth. The acquired pellicle on the material surface and several characteristics of the material, such as roughness, surface charge, and hydrophobicity, can affect bacterial colonization and adhesion. In this paper, the mechanism of oral bacteria adhesion from both bacteria and material, as well as the methods to control bacterial adhesion, are reviewed.

Key words: bacteria adhesion, adhesion protein, receptor, fimbria, salivary pellicle, bacteria adhesion, adhesion protein, receptor, fimbria, salivary pellicle

CLC Number: 

  • R 780.2

TrendMD: 
[1] Flemming HC, Wingender J. The biofilm matrix[J]. Nat Rev Microbiol, 2010, 8(9):623-633.
[2] Kolenbrander PE, Palmer RJ, Rickard AH, et al. Bacterial interactions and successions during plaque development[J]. Periodontol 2000, 2006, 42:47-79.
[3] He X, Hu W, Kaplan CW, et al. Adherence to streptococci facilitates Fusobacterium nucleatum integration into an oral microbial community[J]. Microb Ecol, 2012, 63(3):532-542.
[4] Kuboniwa M, Lamont RJ. Subgingival biofilm formation[J]. Periodontol 2000, 2010, 52(1):38-52.
[5] Ramboarina S, Garnett JA, Zhou M, et al. Structural insights into serine-rich fimbriae from Gram-positive bacteria[J]. J Biol Chem, 2010, 285(42):32446-32457.
[6] Petersen HJ, Keane C, Jenkinson HF, et al. Human platelets recognize a novel surface protein, PadA, on Streptococcus gordonii through a unique interaction involving fibrinogen receptor GPⅡbⅢa[J]. Infect Immun, 2010, 78(1):413-422.
[7] Liang X, Chen YY, Ruiz T, et al. New cell surface protein involved in biofilm formation by Streptococcus parasanguinis[J]. Infect Immun, 2011, 79(8):3239-3248.
[8] Nikitkova AE, Haase EM, Scannapieco FA. Effect of starch and amylase on the expression of amylasebinding protein A in Streptococcus gordonii[J]. Mol Oral Microbiol, 2012, 27(4):284-294.
[9] Biswas I, Drake L, Biswas S. Regulation of gbpC expression in Streptococcus mutans[J]. J Bacteriol, 2007, 189(18):6521-6531.
[10] Sullan RM, Li JK, Crowley PJ, et al. Binding forces of Streptococcus mutans P1 adhesin[J]. ACS Nano, 2015, 9(2):1448-1460.
[11] Brady LJ, Maddocks SE, Larson MR, et al. The changing faces of Streptococcus antigenⅠ/Ⅱ polypeptide family adhesins[J]. Mol Microbiol, 2010, 77(2):276-286.
[12] Nobbs AH, Lamont RJ, Jenkinson HF. Streptococcus adherence and colonization[J]. Microbiol Mol Biol Rev, 2009, 73(3):407-450.
[13] Nagata H, Iwasaki M, Maeda K, et al. Identification of the binding domain of Streptococcus oralis glyceraldehyde-3-phosphate dehydrogenase for Porphyromonas gingivalis major fimbriae[J]. Infect Immun, 2009, 77(11):5130-5138.
[14] Okahashi N, Nakata M, Sakurai A, et al. Pili of oral Streptococcus sanguinis bind to fibronectin and contribute to cell adhesion[J]. Biochem Biophys Res Commun, 2010, 391(2):1192-1196.
[15] Okahashi N, Nakata M, Terao Y, et al. Pili of oral Streptococcus sanguinis bind to salivary amylase and promote the biofilm formation[J]. Microb Pathog, 2011, 50(3/4):148-154.
[16] Kuramitsu HK. Molecular genetic analysis of the virulence of oral bacterial pathogens: an historical perspective[J]. Crit Rev Oral Biol Med, 2003, 14(5):331-344.
[17] Gregoire S, Xiao J, Silva BB, et al. Role of glucosyltransferase B in interactions of Candida albicans with Streptococcus mutans and with an experimental pellicle on hydroxyapatite surfaces[J]. Appl Environ Microbiol, 2011, 77(18):6357-6367.
[18] Esberg A, L?fgren-Burstr?m A, Ohman U, et al. Host and bacterial phenotype variation in adhesion of Streptococcus mutans to matched human hosts[J]. Infect Immun, 2012, 80(11):3869-3879.
[19] Sethi A, Mohanty B, Ramasubbu N, et al. Structure of amylase-binding protein A of Streptococcus gordonii: a potential receptor for human salivary α-amylase enzyme[J]. Protein Sci, 2015, 24(6):1013-1018.
[20] Rüdiger SG, Dahlén G, Carlén A. Pellicle and early dental plaque in periodontitis patients before and after surgical pocket elimination[J]. Acta Odontol Scand, 2012, 70(6):615-621.
[21] Mei L, Busscher HJ, van der Mei HC, et al. Influence of surface roughness on streptococcal adhesion forces to composite resins[J]. Dent Mater, 2011, 27(8):770-778.
[22] Mei L, Ren Y, Busscher HJ, et al. Poisson analysis of streptococcal bond-strengthening on saliva-coated enamel[J]. J Dent Res, 2009, 88(9):841-845.
[23] Zamperini CA, Machado AL, Vergani CE, et al. Adherence in vitro of Candida albicans to plasma treated acrylic resin. Effect of plasma parameters, surface roughness and salivary pellicle[J]. Arch Oral Biol, 2010, 55(10):763-770.
[24] Sharma S, Lavender S, Woo J, et al. Nanoscale characterization of effect of L-arginine on Streptococcus mutans biofilm adhesion by atomic force microscopy[J]. Microbiology, 2014, 160(Pt 7):1466-1473.
[25] Truong VK, Rundell S, Lapovok R, et al. Effect of ultrafine-grained titanium surfaces on adhesion of bacteria[J]. Appl Microbiol Biotechnol, 2009, 83(5):925-937.
[26] Verran J, Jackson S, Coulthwaite L, et al. The effect of dentifrice abrasion on denture topography and the subsequent retention of microorganisms on abraded surfaces[J]. J Prosthet Dent, 2014, 112(6):1513-1522.
[27] Machado MC, Cheng D, Tarquinio KM, et al. Nanotechnology: pediatric applications[J]. Pediatr Res, 2010, 67(5):500-504.
[28] Katsikogianni MG, Missirlis YF. Interactions of bacteria with specific biomaterial surface chemistries under flow conditions[J]. Acta Biomater, 2010, 6(3):1107-1118.
[29] Hori K, Matsumoto S. Bacterial adhesion: From mechanism to control[J]. Biochem Eng J, 2010, 48(3):424-434.
[30] Li YV, Cathles LM. Retention of silica nanoparticles on calcium carbonate sands immersed in electrolyte solutions[J]. J Colloid Interface Sci, 2014, 436:1-8.
[31] Dong X, McCoy E, Zhang M, et al. Inhibitory effects of nisin-coated multi-walled carbon nanotube sheet on biofilm formation from Bacillus anthracis spores [J]. J Environ Sci(China), 2014, 26(12):2526-2534.
[32] Pimentel-Filho Nde J, Martins MC, Nogueira GB, et al. Bovicin HC5 and nisin reduce Staphylococcus aureus adhesion to polystyrene and change the hydrophobicity profile and Gibbs free energy of adhesion[J]. Int J Food Microbiol, 2014, 190:1-8.
[33] Renner LD, Weibel DB. Physicochemical regulation of biofilm formation[J]. MRS Bull, 2011, 36(5):347-355.
[34] 刘音辰, 付东杰, 黄翠, 等. 含精氨酸的抗敏抛光膏对暴露牙本质表面变异链球菌黏附的影响[J]. 华西口腔医学杂志, 2013, 31(5):453-456.
Liu YC, Fu DJ, Huang C, et al. Effect of an argininecontaining polishing paste on Streptococcus mutans adhesion to exposed dentin surfaces[J]. West China J Stomatol, 2013, 31(5):453-456.
[35] Dorkhan M, Hall J, Uvdal P, et al. Crystalline anataserich titanium can reduce adherence of oral streptococci[J]. Biofouling, 2014, 30(6):751-759.
[36] Yumoto H, Hirota K, Hirao K, et al. Anti-inflammatory and protective effects of 2-methacryloyloxyethyl phosphorylcholine polymer on oral epithelial cells[J]. J Biomed Mater Res A, 2015, 103(2):555-563.
[37] 廖娟, 费伟, 郭俊, 等. 载银抗菌纯钛表面的制备及其抗菌性能的检测[J]. 华西口腔医学杂志, 2014, 32(3):303-305.
Liao J, Fei W, Guo J, et al. Preparation and antibacterial tests of silver-modified titanium surface[J]. West China J Stomatol, 2014, 32(3):303-305.
[38] 刘杰, 葛亚丽, 徐连立. 载银纳米二氧化钛树脂基托对变异链球菌和白色假丝酵母菌抗菌性的体外研究[J]. 华西口腔医学杂志, 2012, 30(2):201-205.
Liu J, Ge YL, Xu LL. Study of antibacterial effect of polymethyl methacrylate resin base containing Ag-TiO2 against Streptococcus mutans and Saccharomyces albicans in vitro[J]. West China J Stomatol, 2012, 30(2):201-205.
[39] Otsuka R, Imai S, Murata T, et al. Application of chimeric glucanase comprising mutanase and dextranase for prevention of dental biofilm formation[J]. Microbiol Immunol, 2015, 59(1):28-36.
[40] 刘学军, 刘瑶, 梁晶, 等. 含碘的乳过氧化物酶-过氧化氢-硫氰化物系统对变异链球菌致龋性的影响[J]. 华西口腔医学杂志, 2014, 32(4):404-408. Liu XJ, Liu Y, Liang J, et al. In vitro study of the effect of a lactoperoxidase-peroxidase-thiocyanate system with iodine on the cariogenicinity of Streptococcus mutans[J]. West China J Stomatol, 2014, 32(4):404-408.
(本文采编 王晴)
[1] Yu Yuelin,Kong Weidong. Research progress on the association between primary failure of tooth eruption and parathyroid hormone receptor 1 gene [J]. Int J Stomatol, 2023, 50(5): 573-580.
[2] Li Tan,Liang Xin-hua.. Role of discoidin domain receptor 1 in the regulation of malignant tumor progression and therapy [J]. Int J Stomatol, 2023, 50(2): 230-236.
[3] Chen Siting,Zhong Xiong,Meng Wenxia.. Research progress on Nod-like receptor protein 3 inflammasome in oral mucosal diseases [J]. Int J Stomatol, 2022, 49(4): 471-475.
[4] Luo Xiao,Cai Shengqing,Shi Bing,Li Chenghao.. Investigation of the mechanism of 2,3,7,8-tetrachlorodiphenyl dioxin-induced cleft palate mice model [J]. Int J Stomatol, 2022, 49(3): 317-323.
[5] Qian Suting,Ding Lingmin,Ji Yaning,Lin Jun.. Differential expression of microRNA in gingival crevicular fluid of periodontitis and its regulatory mechanism on periodontitis [J]. Int J Stomatol, 2022, 49(3): 349-355.
[6] Jiang Han,Shen Yingqiang,Chen Qianming. Experimental study of muscarinic receptors on the biological behavior of oral squamous cell carcinoma through Yes related protein signal [J]. Int J Stomatol, 2022, 49(2): 138-143.
[7] An Ning,Li Jiao,Mei Zhidan. Research progress on the osteoprotegerin/receptor activator of nuclear factor-κB/receptor activator of nuclear factor-κB ligand signaling pathway of tooth eruption [J]. Int J Stomatol, 2022, 49(1): 116-120.
[8] Deng Shiyong,Gong Ping,Tan Zhen. Effects of brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein 1 gene on the regulation of oral and systemic bone metabolism [J]. Int J Stomatol, 2021, 48(2): 198-204.
[9] Fu Shijin,Zeng Kan,Li Xin,Yang Jing,Wang Chenglin,Ye Ling. Preliminary study on osteoprotegerin/receptor activator of nuclear factor-κB ligand expression in mandible and femur on site selectivity of bone metastasis of lung cancer cells [J]. Int J Stomatol, 2020, 47(5): 538-546.
[10] Lu Kexin,Zhang Diya,Wu Yanmin. Research progress of protease-activated receptors on different types of cells in periodontal tissue [J]. Int J Stomatol, 2019, 46(6): 657-662.
[11] Wang Linxuan,Wang Qi,Zhao Yun,Mi Fanglin. Research progress of erythropoietin-producing hepatocyte kinase receptor and ephrin ligand in alveolar bone remodeling [J]. Int J Stomatol, 2019, 46(6): 724-729.
[12] Qin Zhang,Ping Gong. Advancements in receptor activity-modifying protein-1 for osteogenesis [J]. Inter J Stomatol, 2019, 46(1): 30-36.
[13] Lu Mao,Houyu Ju,Guoxin Ren. Regulation of programmed death receptor-1 and its ligand signalling pathway and its progress in the treatment of head and neck squamous cell carcinoma [J]. Inter J Stomatol, 2018, 45(5): 560-565.
[14] Yixuan Jiang,Longyi Mo,Xiaoyue Jia,Xin Xu,Chengcheng Liu. Prevention and treatment for periodontitis by phytoestrogens [J]. Inter J Stomatol, 2018, 45(5): 571-578.
[15] Cong Wenwen, Zhang Daizun, Xiao Wenlin, Xue Lingfa, Xu Yaoxiang. Expression changes of platelet-derived growth factor receptor α in the process of palatal suspension culture of the C57BL/6J mouse in vitro [J]. Inter J Stomatol, 2018, 45(3): 313-318.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 458 -460 .
[8] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 452 -454 .
[9] . [J]. Inter J Stomatol, 2008, 35(S1): .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .