国际口腔医学杂志 ›› 2021, Vol. 48 ›› Issue (4): 398-404.doi: 10.7518/gjkq.2021068

• 影像专栏 • 上一篇    下一篇

锥形束CT三维头影测量参考坐标系的研究进展

施丹妮(),杨鑫,吴建勇()   

  1. 上海交通大学医学院附属新华医院口腔科 上海 200092
  • 收稿日期:2021-01-03 修回日期:2021-03-28 出版日期:2021-07-01 发布日期:2021-06-30
  • 通讯作者: 吴建勇
  • 作者简介:施丹妮,住院医师,硕士,Email: 972068566@qq.com

Research progress of reference coordinate system for three-dimensional cephalometric based on cone beam computed tomography

Shi Danni(),Yang Xin,Wu Jianyong()   

  1. Dept. of Stomatology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
  • Received:2021-01-03 Revised:2021-03-28 Online:2021-07-01 Published:2021-06-30
  • Contact: Jianyong Wu

摘要:

头影测量是正畸医生诊断与治疗设计的重要手段,与传统二维头影测量相比,三维头影测量提供的信息更加准确、完整,但目前尚未形成统一的三维头影测量参考坐标系建立标准。为建立完善的三维头影测量参考坐标系,本文综述了锥形束CT三维头影测量中参考坐标系建立的研究进展,按包含整个颅面部的整体参考坐标系和针对不同面部单位的局部参考坐标系,分别研究了坐标系的建立、特点及应用,以期为三维参考坐标系的标准化、统一化提供参考。

关键词: 锥形束CT, 三维头影测量, 参考坐标系

Abstract:

Compared with two-dimensional (2D) cephalometry, three-dimensional (3D) cephalometry provides more accurate and complete information, but a complete standard of a 3D cephalometric analysis system has not been formula-ted yet. In this article, to establish a perfect 3D cephalometric analysis system, literature concerning the reference coordinate system for 3D cephalometric measurement on the basis of cone-beam computed tomography was reviewed. The establishment, characteristics and application of the reference coordinate system were explored according to the whole cra-nial-face reference coordinate system and the local reference coordinate system for different facial units. Thus, a theoretical basis for the standardisation and unification of a 3D reference coordinate system was provided.

Key words: cone beam computed tomography, three-dimensional cephalometric measurement, reference coordinate system

中图分类号: 

  • R783.5
[1] Grayson BH, McCarthy JG, Bookstein F. Analysis of craniofacial asymmetry by multiplane cephalometry[J]. Am J Orthod, 1983,84(3):217-224.
pmid: 6577794
[2] Cassi D, De Biase C, Tonni I, et al. Natural position of the head: review of two-dimensional and three-dimensional methods of recording[J]. Br J Oral Maxillofac Surg, 2016,54(3):233-240.
doi: 10.1016/j.bjoms.2016.01.025 pmid: 26896079
[3] Kadhom ZM, Jumaa N. Natural head position: a review[J]. J Baghdad Coll Dent, 2020,32(3):19-22.
[4] Cassi D, De Biase C, Tonni I, et al. Natural position of the head: review of two-dimensional and three-dimensional methods of recording[J]. Br J Oral Maxillofac Surg, 2016,54(3):233-240.
doi: 10.1016/j.bjoms.2016.01.025 pmid: 26896079
[5] Cevidanes L, Oliveira AE, Motta A, et al. Head orientation in CBCT-generated cephalograms[J]. Angle Orthod, 2009,79(5):971-977.
doi: 10.2319/090208-460.1 pmid: 19705941
[6] Zhu S, Keeling A, Hsung TC, et al. The difference between registered natural head position and estimated natural head position in three dimensions[J]. Int J Oral Maxillofac Surg, 2018,47(2):276-282.
doi: 10.1016/j.ijom.2017.07.016
[7] Kim DS, Yang HJ, Huh KH, et al. Three-dimensio-nal natural head position reproduction using a single facial photograph based on the POSIT method[J]. J Craniomaxillofac Surg, 2014,42(7):1315-1321.
doi: 10.1016/j.jcms.2014.03.017
[8] Liu XJ, Li QQ, Pang YJ, et al. Modified method of recording and reproducing natural head position with a multicamera system and a laser level[J]. Am J Orthod Dentofacial Orthop, 2015,147(6):781-787.
doi: 10.1016/j.ajodo.2015.01.016
[9] Park IK, Lee KY, Jeong YK, et al. Recording natural head position using an accelerometer and reconstruction from computed tomographic images[J]. J Korean Assoc Oral Maxillofac Surg, 2017,43(4):256-261.
doi: 10.5125/jkaoms.2017.43.4.256
[10] Chen S, Wang L, Li G, et al. Machine learning in orthodontics: introducing a 3D auto-segmentation and auto-landmark finder of CBCT images to assess ma-xillary constriction in unilateral impacted canine patients[J]. Angle Orthod, 2020,90(1):77-84.
doi: 10.2319/012919-59.1 pmid: 31403836
[11] Lam WYH, Hsung RTC, Choi WWS, et al. A clinical technique for virtual articulator mounting with natural head position by using calibrated stereophotogrammetry[J]. J Prosthet Dent, 2018,119(6):902-908.
doi: 10.1016/j.prosdent.2017.07.026
[12] Vinchon M, Pellerin P, Pertuzon B, et al. Vestibular orientation for craniofacial surgery: application to the management of unicoronal synostosis[J]. Childs Nerv Syst, 2007,23(12):1403-1409.
doi: 10.1007/s00381-007-0471-x
[13] Giannopoulou MA, Kondylidou-Sidira AC, Papadopoulos MA, et al. Are orthodontic landmarks and variables in digital cephalometric radiography taken in fixed and natural head positions reliable[J]. Int Orthod, 2020,18(1):54-68.
doi: 10.1016/j.ortho.2019.08.024
[14] Madsen DP, Sampson WJ, Townsend GC. Craniofacial reference plane variation and natural head position[J]. Eur J Orthod, 2008,30(5):532-540.
doi: 10.1093/ejo/cjn031 pmid: 18632837
[15] Xia JJ, Gateno J, Teichgraeber JF, et al. Algorithm for planning a double-jaw orthognathic surgery using a computer-aided surgical simulation (CASS) protocol. Part 2: three-dimensional cephalometry[J]. Int J Oral Maxillofac Surg, 2015,44(12):1441-1450.
doi: 10.1016/j.ijom.2015.06.007
[16] Liu Y, Wang S, Wang CH, et al. Relationships of vertical facial pattern, natural head position and craniocervical posture in young Chinese children[J]. Cranio, 2018,36(5):311-317.
[17] Capon T. Standardised anatomical alignment of the head in a clinical photography studio. A comparison between the Frankfort horizontal and the natural head position[J]. J Vis Commun Med, 2016,39(3/4):105-111.
doi: 10.1080/17453054.2016.1246059
[18] Oh S, Kim CY, Hong J. A comparative study between data obtained from conventional lateral ce-phalometry and reconstructed three-dimensional computed tomography images[J]. J Korean Assoc Oral Maxillofac Surg, 2014,40(3):123-129.
doi: 10.5125/jkaoms.2014.40.3.123
[19] 金珉廷, 刘怡. 三维颅面水平参考平面的确定方法[J]. 北京大学学报(医学版), 2019,51(5):937-943.
Jin MT, Liu Y. Using three-dimensional craniofacial images to construct horizontal reference plane[J]. J Peking Univ (Health Sci), 2019,51(5):937-943.
[20] Pittayapat P, Jacobs R, Bornstein MM, et al. Three-dimensional Frankfort horizontal plane for 3D cephalometry: a comparative assessment of conventional versus novel landmarks and horizontal planes[J]. Eur J Orthod, 2018,40(3):239-248.
doi: 10.1093/ejo/cjx066 pmid: 29016738
[21] Le Maître A, Schuetz P, Vignaud P, et al. New data about semicircular canal morphology and locomotion in modern hominoids[J]. J Anat, 2017,231(1):95-109.
doi: 10.1111/joa.2017.231.issue-1
[22] Pelo S, Deli R, Correra P, et al. Evaluation of 2 different reference Planes used for the study of asymmetric facial malformations[J]. J Craniofac Surg, 2009,20(1):41-45.
doi: 10.1097/SCS.0b013e318190ddd3
[23] 梁舒然, 高伟民, 白玉兴, 等. 锥形束CT三维头影测量项目可重复性初探[J]. 中华口腔医学杂志, 2013,48(4):248-252.
Liang SR, Gao WM, Bai YX, et al. Repeatability of three-dimensional measurement based on cone-beam CT images[J]. Chin J Stomatol, 2013,48(4):248-252.
[24] Kim HJ, Kim BC, Kim JG, et al. Construction and validation of the midsagittal reference plane based on the skull base symmetry for three-dimensional ce-phalometric craniofacial analysis[J]. J Craniofac Surg, 2014,25(2):338-342.
doi: 10.1097/SCS.0000000000000380
[25] 王嘉艺, 王珊, 王林. CBCT三维头影测量正中矢状参考平面的探究[J]. 口腔医学, 2017,37(7):621-624.
Wang JY, Wang S, Wang L. A study on the midsagittal reference plane of CBCT three-dimensional cepha-lometry[J]. Stomatology, 2017,37(7):621-624.
[26] Thiesen G. Determining the midsagittal reference plane for evaluating facial asymmetries[J]. Am J Orthod Dentofacial Orthop, 2016,150(6):908-909.
doi: 10.1016/j.ajodo.2016.08.016
[27] Lee JK, Jung PK, Moon CH. Three-dimensional cone beam computed tomographic image reorientation u-sing soft tissues as reference for facial asymmetry diagnosis[J]. Angle Orthod, 2014,84(1):38-47.
doi: 10.2319/112112-890.1
[28] 刘筱菁, 归来, 张智勇, 等. 基于CT三维头颅重建技术的模型在颅颌面畸形治疗中的应用[J]. 中华整形外科杂志, 2006,22(3):169-171.
Liu XJ, Gui L, Zhang ZY, et al. The application of three-dimensional skull model in the treatment of cra-niofacial malformation[J]. Chin J Plast Surg, 2006,22(3):169-171.
[29] 熊玉雪, 杨慧芳, 赵一姣, 等. 两种评价面部三维表面数据不对称度方法的比较[J]. 北京大学学报(医学版), 2015,47(2):340-343.
Xiong YX, Yang HF, Zhao YJ, et al. Comparison of two kinds of methods evaluating the degree of facial asymmetry by three-dimensional data[J]. J Peking Univ (Health Sci), 2015,47(2):340-343.
[30] 王斯维, 黎敏, 杨慧芳, 等. 3种生成大视野锥形束CT数据正中矢状面方法的比较[J]. 北京大学学报(医学版), 2016,48(2):330-335.
Wang SW, Li M, Yang HF, et al. Evaluation of three methods for constructing craniofacial mid-sagittal plane on the cone beam computed tomography[J]. J Peking Univ (Health Sci), 2016,48(2):330-335.
[31] Santos RMG, De Martino JM, Haiter Neto F, et al. Cone beam computed tomography-based cephalometric norms for Brazilian adults[J]. Int J Oral Ma-xillofac Surg, 2018,47(1):64-71.
[32] Li J, Yuan P, Chang CM, et al. New approach to establish an object reference frame for dental arch in computer-aided surgical simulation[J]. Int J Oral Ma-xillofac Surg, 2017,46(9):1193-1200.
[33] Tong HS, Enciso R, van Elslande D, et al. A new method to measure mesiodistal angulation and faciolingual inclination of each whole tooth with volumetric cone-beam computed tomography images[J]. Am J Orthod Dentofacial Orthop, 2012,142(1):133-143.
doi: 10.1016/j.ajodo.2011.12.027
[34] Wan ZQ, Shen SG, Gui HJ, et al. Evaluation of the postoperative stability of a counter-clockwise rotation technique for skeletal ClassⅡpatients by using a novel three-dimensional position-posture method[J]. Sci Rep, 2019,9(1):13196.
doi: 10.1038/s41598-019-49335-2
[35] Gateno J, Xia JJ, Teichgraeber JF. New 3-dimensional cephalometric analysis for orthognathic surgery[J]. J Oral Maxillofac Surg, 2011,69(3):606-622.
doi: 10.1016/j.joms.2010.09.010
[1] 丁张帆,郭陟永,苗诚,李春洁,宣鸣,王晓毅,张壮. 基于锥形束CT的三维可视化技术在颌骨囊性病变手术中的应用[J]. 国际口腔医学杂志, 2021, 48(2): 180-186.
[2] 王奔,许喆桢,韦曦. 数字化微创技术在牙髓根尖周病学中的应用与进展[J]. 国际口腔医学杂志, 2021, 48(1): 110-118.
[3] 唐蓓,赵文俊,王虎,郑广宁,游梦. 根管超填导致下牙槽神经损伤2例[J]. 国际口腔医学杂志, 2020, 47(3): 293-296.
[4] 章婷婷,胡常红,彭燕,周文翘,张慧聪,刘蝶. 300例不同年龄段有牙颌人群上唇软组织侧貌的锥形束CT三维测量分析[J]. 国际口腔医学杂志, 2020, 47(2): 182-188.
[5] 王春林,刘从华,宋思吟,周丽淑,林丽佳. 运用锥形束CT诊断上下颌横向发育不调的研究进展[J]. 国际口腔医学杂志, 2020, 47(1): 121-124.
[6] 黎祺, 黄少宏. 岭南地区广府民系人群下颌第二恒磨牙牙根和根管形态的锥形束CT研究[J]. 国际口腔医学杂志, 2019, 46(6): 640-649.
[7] 曹焜,李家锋,孙玉华,鲍强,卢秋宁,唐巍. 下颌下窝的锥形束CT影像分析[J]. 国际口腔医学杂志, 2019, 46(2): 209-212.
[8] 孟怡彤,张晓东. 成人个别正常颌上气道不同软件三维测量的比较研究[J]. 国际口腔医学杂志, 2018, 45(6): 690-694.
[9] 徐迅, 黄建生, 甘泽坤, 罗震. 上颌第一磨牙区腭侧骨板的锥形束CT测量结果及其临床意义[J]. 国际口腔医学杂志, 2017, 44(6): 686-690.
[10] 袁艺航, 张成晓雪, 王扬, 何双双, 宋雪娟, 王虎. 成都正常人群上颌前牙区鼻腭管相关解剖结构的锥形束CT研究[J]. 国际口腔医学杂志, 2017, 44(5): 566-572.
[11] 吴杉杉, 张茹, 侯本祥. 钙化根管的诊断与治疗[J]. 国际口腔医学杂志, 2017, 44(3): 279-283.
[12] 罗志强, 叶钟泰. 新疆地区不同人群上颌窦外侧骨壁厚度的锥形束CT测量分析[J]. 国际口腔医学杂志, 2017, 44(1): 55-58.
[13] 毛小泉,蒙亚娇,李海芳. 根样釉珠1例[J]. 国际口腔医学杂志, 2016, 43(4): 406-408.
[14] 高静,申静,张海峰,靳淑凤. 锥形束CT与根尖片对实验性根尖周炎根管治疗结果的评估[J]. 国际口腔医学杂志, 2016, 43(3): 292-294.
[15] 郭文豪,游梦,罗晶晶,王凯利,王虎,郑广宁. 4例口腔颌面部非霍奇金淋巴瘤的影像学表现[J]. 国际口腔医学杂志, 2016, 43(2): 146-150.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 冯璐,孟文霞. 常见口腔黏膜疾病患者行种植修复相关问题的研究进展[J]. 国际口腔医学杂志, 2021, 48(2): 147 -155 .
[2] 王立冬,马文,付帅,张长彬,崔庆赢,梁燕,黎明. 不同方法制作正颌手术数字化牙合板的研究及精确性分析[J]. 国际口腔医学杂志, 2021, 48(2): 156 -164 .
[3] 李米雪子,张琛. 椅旁计算机辅助设计/计算机辅助制作髓腔固位冠修复根管治疗后磨牙的临床考量[J]. 国际口腔医学杂志, 2021, 48(3): 274 -279 .
[4] 张世珍,赖文莉. 骨性Ⅲ类错牙合畸形上颌骨前牵引方法及辅助扩弓的研究进展[J]. 国际口腔医学杂志, 2021, 48(3): 354 -361 .
[5] 赵吉宏. 口腔局部麻醉新概念[J]. 国际口腔医学杂志, 2021, 48(4): 373 -379 .
[6] 朱轩智,赵蕾. 甲状腺功能减退症与牙周炎相关性的研究进展[J]. 国际口腔医学杂志, 2021, 48(4): 380 -384 .
[7] 丁旭,李鑫,李艳,夏博园,于维先. 氧化应激和线粒体质量控制与牙周炎关系的研究进展[J]. 国际口腔医学杂志, 2021, 48(4): 385 -390 .
[8] 赵文俊,陈宇. 引导组织/骨再生牙周功能梯度膜的研究进展[J]. 国际口腔医学杂志, 2021, 48(4): 391 -397 .
[9] 邵冰婷,曹丹,严斌. 影像学预测上颌尖牙阻生的研究进展[J]. 国际口腔医学杂志, 2021, 48(4): 405 -410 .
[10] 杨祺,郭丽娟. 自体脂肪移植联合唇部组织瓣在修复唇萎缩畸形缺损中的应用[J]. 国际口腔医学杂志, 2021, 48(4): 411 -416 .