国际口腔医学杂志 ›› 2019, Vol. 46 ›› Issue (3): 326-332.doi: 10.7518/gjkq.2019007

• 综述 • 上一篇    下一篇

根面龋微生态的研究进展

杜倩1,任彪2,周学东1,徐欣1()   

  1. 1.口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心四川大学华西口腔医院牙体牙髓病科 成都 610041
    2.口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心四川大学华西口腔医学院 成都 610041
  • 收稿日期:2018-10-22 修回日期:2019-03-04 出版日期:2019-05-01 发布日期:2019-06-05
  • 通讯作者: 徐欣 E-mail:xu@scu.edu.cn
  • 作者简介:杜倩,博士,Email:qiandu1991@126.com
  • 基金资助:
    国家自然科学基金(81771099);国家自然科学基金(81670978);四川省科学技术厅重大前沿项目(2016JY0006)

The microbial ecology of root caries

Qian Du1,Biao Ren2,Xuedong Zhou1,Xin Xu1()   

  1. 1.State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
    2.State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2018-10-22 Revised:2019-03-04 Online:2019-05-01 Published:2019-06-05
  • Contact: Xin Xu E-mail:xu@scu.edu.cn
  • Supported by:
    This study was supported by National Natural Science Foundation of China(81771099);This study was supported by National Natural Science Foundation of China(81670978);Key Project for Frontier Research of Science and Technology Department of Sichuan Province(2016JY0006)

摘要:

龋病的发生是在外界环境多因素作用下,牙菌斑微生态中细菌与细菌、细菌与宿主之间生态失衡,牙菌斑生物膜细菌组成由生理性组合向病理性组合演变,产酸耐酸菌获得竞争优势,牙菌斑生物膜产酸增加,牙体硬组织脱矿,最终形成肉眼可见的龋损。牙根面特殊微环境及组织学结构使根面龋的发生较牙冠部窝沟点隙龋更加复杂。根面龋的发生发展不仅包括微生物产酸导致牙体硬组织脱矿,还包括内源性、细菌源性胶原酶对牙本质胶原蛋白的溶解。牙根面微生态系中微生物具有高度多样性,相较于牙冠部,牙根面有更多的革兰阴性菌、厌氧菌和真菌定植,微生物之间的相互作用更加复杂。本文就牙根面牙菌斑微生态的研究进展进行综述,以期从微生态的角度为根面龋的防治提供新的思路。

关键词: 根面龋, 微生态, 革兰阴性菌, 厌氧菌, 白色念珠菌

Abstract:

As a clinical subtype of dental caries, root caries is a polymicrobial infectious disease resulting from dysbiosis of the microbial ecology of the mouth. In this case, highly acidogenic/aciduric species are selectively enriched while less aciduric commensal residents are suppressed within the biofilm. This feed-forward imbalance in microbial equilibrium leads to a continuous decline in pH to the threshold below which tooth hard tissue demineralization occurs. Due to the histological features of tooth dentine and cementum, as well as the impact of both saliva and gingival groove liquid, the microbial etiology of root caries is relatively complex, including not only demineralization by bacterial acidification but also organic matrix degradation. The microorganisms within root caries lesions show high diversity, including large numbers of Gram-negative bacteria, anaerobic bacteria, and even fungi. This review summarizes the characteristic microorganisms of root caries from the perspective of microbial ecology to advance our understanding of root caries.

Key words: root caries, microbial ecology, Gram-negative bacteria, anaerobic bacteria, Candida albicans

中图分类号: 

  • R781.1

表 1

根面龋特异性微生物及其在根面龋中的作用"

微生物 产酸 蛋白凝固及降解 自凝聚 共凝聚 其他
细菌 放线菌属[19,25] + + - +
乳杆菌属[19,25] + + + - 胶原特异性黏附
丙酸杆菌属[15] + + - -
普雷沃菌属[19,25] - + + +
口腔链球菌[9] - - - - 促进牙菌斑中IgA蛋白酶生成
双歧杆菌属[19,25] - - - -
欧氏菌属[26,27] - - - -
真菌 白色念珠菌[31,46-50] + + - - 与口腔微生物间交互作用
都柏林念珠菌[31] - - - -
光滑念珠菌[31] - - - -
[1] GBD 2016 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990- 2016: a systematic analysis for the Global Burden of Disease Study 2016[J]. Lancet, 2017,390(10100):1211-1259.
doi: 10.1016/S0140-6736(17)32154-2
[2] Carvalho TS, Lussi A . Assessment of root caries lesion activity and its histopathological features[J]. Monogr Oral Sci, 2017,26:63-69.
doi: 10.1159/issn.0077-0892
[3] Damé-Teixeira N, Parolo CCF, Maltz M . Specificities of caries on root surface[J]. Monogr Oral Sci, 2017,26:15-25.
doi: 10.1159/issn.0077-0892
[4] Mayanagi G, Igarashi K, Washio J , et al. pH response and tooth surface solubility at the tooth/bacteria interface[J]. Caries Res, 2017,51(2):160-166.
doi: 10.1159/000454781
[5] Deyhle H, Bunk O, Müller B . Nanostructure of healthy and caries-affected human teeth[J]. Nanomedicine, 2011,7(6):694-701.
doi: 10.1016/j.nano.2011.09.005
[6] Takahashi N, Nyvad B . Ecological hypojournal of dentin and root caries[J]. Caries Res, 2016,50(4):422-431.
doi: 10.1159/000447309
[7] Simón-Soro A, Guillen-Navarro M, Mira A . Metatranscriptomics reveals overall active bacterial composition in caries lesions[J]. J Oral Microbiol, 2014,6:25443.
doi: 10.3402/jom.v6.25443
[8] Preza D, Olsen I, Aas JA , et al. Bacterial profiles of root caries in elderly patients[J]. J Clin Microbiol, 2008,46(6):2015-2021.
doi: 10.1128/JCM.02411-07
[9] Chen L, Qin B, Du M , et al. Extensive description and comparison of human supra-gingival microbiome in root caries and health[J]. PLoS One, 2015,10(2):e0117064.
doi: 10.1371/journal.pone.0117064
[10] Marsh PD . Microbial ecology of dental plaque and its significance in health and disease[J]. Adv Dent Res, 1994,8(2):263-271.
doi: 10.1177/08959374940080022001
[11] Takahashi N, Nyvad B . Caries ecology revisited: microbial dynamics and the caries process[J]. Caries Res, 2008,42(6):409-418.
doi: 10.1159/000159604
[12] Nyvad B, Kilian M . Microbiology of the early colonization of human enamel and root surfaces in vivo[J]. Scand J Dent Res, 1987,95(5):369-380.
[13] Preza D, Olsen I, Willumsen T , et al. Microarray analysis of the microflora of root caries in elderly[J]. Eur J Clin Microbiol Infect Dis, 2009,28(5):509-517.
doi: 10.1007/s10096-008-0662-8
[14] Dame-Teixeira N, Parolo CC, Maltz M , et al. Actinomyces spp. gene expression in root caries lesions[J]. J Oral Microbiol, 2016,8:32383.
doi: 10.3402/jom.v8.32383
[15] Hashimoto K, Sato T, Shimauchi H , et al. Profiling of dental plaque microflora on root caries lesions and the protein-denaturing activity of these bacteria[J]. Am J Dent, 2011,24(5):295-299.
[16] Shen S, Samaranayake LP, Yip HK . Coaggregation profiles of the microflora from root surface caries lesions[J]. Arch Oral Biol, 2005,50(1):23-32.
doi: 10.1016/j.archoralbio.2004.07.002
[17] de Oliveira Cordeiro JG . Experimental root surface caries in hamsters the development of the disease after inoculations of two types of cariogenic bacteria[J]. Bull Tokyo Med Dent Univ, 1995,42(3):83-103.
[18] Badet C, Thebaud NB . Ecology of lactobacilli in the oral cavity: a review of literature[J]. Open Microbiol J, 2008,2:38-48.
doi: 10.2174/1874285800802010038
[19] Chhour KL, Nadkarni MA, Byun R , et al. Molecular analysis of microbial diversity in advanced caries[J]. J Clin Microbiol, 2005,43(2):843-849.
doi: 10.1128/JCM.43.2.843-849.2005
[20] He J, Tu Q, Ge Y , et al. Taxonomic and functional analyses of the supragingival microbiome from caries- affected and caries-free hosts[J]. Microb Ecol, 2018,75(2):543-554.
doi: 10.1007/s00248-017-1056-1
[21] Yang F, Zeng X, Ning K , et al. Saliva microbiomes distinguish caries-active from healthy human populations[J]. ISME J, 2012,6(1):1-10.
doi: 10.1038/ismej.2011.71
[22] Teng F, Yang F, Huang S , et al. Prediction of early childhood caries via spatial-temporal variations of oral microbiota[J]. Cell Host Microbe, 2015,18(3):296-306.
doi: 10.1016/j.chom.2015.08.005
[23] Wolff D, Frese C, Maier-Kraus T , et al. Bacterial biofilm composition in caries and caries-free subjects[J]. Caries Res, 2013,47(1):69-77.
doi: 10.1159/000344022
[24] Wang Y, Zhang J, Chen X , et al. Profiling of oral microbiota in early childhood caries using single-molecule real-time sequencing[J]. Front Microbiol, 2017,8:2244.
doi: 10.3389/fmicb.2017.02244
[25] Mantzourani M, Fenlon M, Beighton D . Association between Bifidobacteriaceae and the clinical severity of root caries lesions[J]. Oral Microbiol Immunol, 2009,24(1):32-37.
doi: 10.1111/omi.2008.24.issue-1
[26] Obata J, Takeshita T, Shibata Y , et al. Identification of the microbiota in carious dentin lesions using 16S rRNA gene sequencing[J]. PLoS One, 2014,9(8):e103712.
doi: 10.1371/journal.pone.0103712
[27] Zhou J, Jiang N, Wang S , et al. Exploration of human salivary microbiomes—insights into the novel characteristics of microbial community structure in caries and caries-free subjects[J]. PLoS One, 2016,11(1):e0147039.
doi: 10.1371/journal.pone.0147039
[28] Brailsford SR, Shah B, Simons D , et al. The predominant aciduric microflora of root-caries lesions[J]. J Dent Res, 2001,80(9):1828-1833.
doi: 10.1177/00220345010800091101
[29] Beighton D, Ludford R, Clark DT , et al. Use of CHROMagar Candida medium for isolation of yeasts from dental samples[J]. J Clin Microbiol, 1995,33(11):3025-3027.
[30] Zaremba ML, Stokowska W, Klimiuk A , et al. Microorganisms in root carious lesions in adults[J]. Adv Med Sci, 2006,51(Suppl 1):237-240.
[31] Shen S, Samaranayake LP, Yip HK , et al. Bacterial and yeast flora of root surface caries in elderly, ethnic Chinese[J]. Oral Dis, 2002,8(4):207-217.
doi: 10.1034/j.1601-0825.2002.01796.x
[32] de Carvalho FG, Silva DS, Hebling J , et al. Presence of mutans streptococci and Candida spp. in dental plaque/dentine of carious teeth and early childhood caries[J]. Arch Oral Biol, 2006,51(11):1024-1028.
doi: 10.1016/j.archoralbio.2006.06.001
[33] Raja M, Hannan A, Ali K . Association of oral candidal carriage with dental caries in children[J]. Caries Res, 2010,44(3):272-276.
[34] Yang XQ, Zhang Q, Lu LY , et al. Genotypic distribution of Candida albicans in dental biofilm of Chinese children associated with severe early childhood caries[J]. Arch Oral Biol, 2012,57(8):1048-1053.
doi: 10.1016/j.archoralbio.2012.05.012
[35] Parahitiyawa NB, Samaranayake YH, Samaranayake LP , et al. Interspecies variation in Candida biofilm formation studied using the Calgary biofilm device[J]. APMIS, 2006,114(4):298-306.
doi: 10.1111/apm.2006.114.issue-4
[36] Thein ZM, Smaranayake YH, Smaranayake LP . Dietary sugars, serum and the biocide chlorhexidine digluconate modify the population and structural dyna-mics of mixed Candida albicans and Escherichia coli biofilms[J]. APMIS, 2007,115(11):1241-1251.
doi: 10.1111/apm.2007.115.issue-11
[37] Caroline de Abreu Brandi T, Portela MB, Lima PM , et al. Demineralizing potential of dental biofilm added with Candida albicans and Candida parapsilosis isolated from preschool children with and without caries[J]. Microb Pathog, 2016,100:51-55.
doi: 10.1016/j.micpath.2016.09.003
[38] Charone S, Portela MB, Martins KO , et al. Role of Candida species from HIV infected children in enamel caries lesions: an in vitro study[J]. J Appl Oral Sci, 2017,25(1):53-60.
doi: 10.1590/1678-77572016-0021
[39] Klinke T, Klimm HW, Zahnerhaltung PF , et al. Induction of caries-like lesions by Candida albicans in an artificial mouth[J]. Int Poster J Dent Oral Med, 2003,5(4):200.
[40] Klinke T, Guggenheim B, Klimm W , et al. Dental caries in rats associated with Candida albicans[J]. Caries Res, 2011,45(2):100-106.
doi: 10.1159/000324809
[41] Shirtliff ME, Peters BM, Jabra-Rizk MA . Cross-kingdom interactions: Candida albicans and bacteria[J]. FEMS Microbiol Lett, 2009,299(1):1-8.
doi: 10.1111/fml.2009.299.issue-1
[42] Bamford CV, d’Mello A, Nobbs AH , et al. Streptococcus gordonii modulates Candida albicans biofilm formation through intergeneric communication[J]. Infect Immun, 2009,77(9):3696-3704.
doi: 10.1128/IAI.00438-09
[43] Morales DK, Hogan DA . Candida albicans interactions with bacteria in the context of human health and disease[J]. PLoS Pathog, 2010,6(4):e1000886.
doi: 10.1371/journal.ppat.1000886
[44] Diaz PI, Xie Z, Sobue T , et al. Synergistic interaction between Candida albicans and commensal oral streptococci in a novel in vitro mucosal model[J]. Infect Immun, 2012,80(2):620-632.
doi: 10.1128/IAI.05896-11
[45] Fox EP, Cowley ES, Nobile CJ , et al. Anaerobic bacteria grow within Candida albicans biofilms and induce biofilm formation in suspension cultures[J]. Curr Biol, 2014,24(20):2411-2416.
doi: 10.1016/j.cub.2014.08.057
[46] Falsetta ML, Klein MI, Colonne PM , et al. Symbiotic relationship between Streptococcus mutans and Candida albicans synergizes virulence of plaque biofilms in vivo[J]. Infect Immun, 2014,82(5):1968-1981.
doi: 10.1128/IAI.00087-14
[47] Hwang G, Marsh G, Gao L , et al. Binding force dynamics of Streptococcus mutans-glucosyltransferase B to Candida albicans[J]. J Dent Res, 2015,94(9):1310-1317.
doi: 10.1177/0022034515592859
[48] Gregoire S, Xiao J, Silva BB , et al. Role of glucosyltransferase B in interactions of Candida albicans with Streptococcus mutans and with an experimental pellicle on hydroxyapatite surfaces[J]. Appl Environ Microbiol, 2011,77(18):6357-6367.
doi: 10.1128/AEM.05203-11
[49] Hwang G, Liu Y, Kim D , et al. Candida albicans mannans mediate Streptococcus mutans exoenzyme GtfB binding to modulate cross-kingdom biofilm development in vivo[J]. PLoS Pathog, 2017,13(6):e1006407.
doi: 10.1371/journal.ppat.1006407
[50] Cavalcanti YW, Wilson M, Lewis M , et al. Modulation of Candida albicans virulence by bacterial biofilms on titanium surfaces[J]. Biofouling, 2016,32(2):123-134.
doi: 10.1080/08927014.2015.1125472
[51] Bowen WH, Koo H . Biology of Streptococcus mutans- derived glucosyltransferases: role in extracellular matrix formation of cariogenic biofilms[J]. Caries Res, 2011,45(1):69-86.
[52] He J, Kim D, Zhou X , et al. RNA-Seq reveals enhanced sugar metabolism in Streptococcus mutans co-cultured with Candida albicans within mixed-species biofilms[J]. Front Microbiol, 2017,8:1036.
doi: 10.3389/fmicb.2017.01036
[1] 文书琼,郭君怡,戴文晓,王迪侃,王智. 白色念珠菌影响口腔黏膜癌变的机制进展[J]. 国际口腔医学杂志, 2019, 46(6): 705-710.
[2] 冯瑾,吴红崑. 抗菌牙科材料在根面龋治疗中的研究进展[J]. 国际口腔医学杂志, 2019, 46(4): 475-480.
[3] 郝一龙,周瑜,陈谦明. 正中菱形舌炎发病危险因素的研究进展[J]. 国际口腔医学杂志, 2019, 46(3): 333-338.
[4] 黄慧,张琼,邹静. 低龄儿童龋微生物群落的研究进展[J]. 国际口腔医学杂志, 2016, 43(3): 295-297.
[5] 孙庆忠1 叶宏林2. 68例慢性牙周炎患者龈下菌斑致病菌的分布及耐药性分析[J]. 国际口腔医学杂志, 2013, 40(6): 724-726.
[6] 胡永啸 谢志刚. 牙周病微生态改善疗法的研究进展[J]. 国际口腔医学杂志, 2013, 40(3): 326-329.
[7] 石晶1,2综述 彭惠1审校. 自锁托槽与传统托槽对牙周环境影响的研究现状和进展[J]. 国际口腔医学杂志, 2012, 39(6): 824-827.
[8] 何俊霖综述 胡付品 俞立英审校. 牙周优势厌氧菌耐药性的研究进展[J]. 国际口腔医学杂志, 2012, 39(5): 612-616.
[9] 杨晓琼1综述 邹静2审校. 低龄儿童龋与其相关致病菌的研究进展[J]. 国际口腔医学杂志, 2011, 38(4): 455-459.
[10] 王淑敏综述 俞立英审校. 牙周厌氧菌耐药性及其控制途径[J]. 国际口腔医学杂志, 2010, 37(3): 310-310~313.
[11] 孟庆伟综述 赵尔扬审校. 牙周炎致病菌的变性梯度凝胶电泳检测[J]. 国际口腔医学杂志, 2009, 36(5): 547-549.
[12] 刘源综述 周学东审校. 变异链球菌的微生态学研究进展[J]. 国际口腔医学杂志, 2008, 35(5): 502-502~506.
[13] 董聪综述 张富强审校. 可摘局部义齿对口腔微生态系的影响[J]. 国际口腔医学杂志, 2008, 35(1): 71-73.
[14] 林靖雯,陈谦明. 富组蛋白抗白色念珠菌作用的研究进展[J]. 国际口腔医学杂志, 2005, 32(04): 294-296.
[15] 秦伟,林正梅. 感染根管内白色念珠菌的检测和治疗[J]. 国际口腔医学杂志, 2005, 32(03): 236-238.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王昆润. 修补颌骨缺损的新型生物学相容材料[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 王昆润. 咀嚼口香糖对牙周组织微循环的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 宋红. 青少年牙周炎外周血分叶核粒细胞的趋化功能[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 高卫民,李幸红. 发达国家牙医学院口腔种植学教学现状[J]. 国际口腔医学杂志, 1999, 26(06): .
[5] 侯锐. 正畸患者釉白斑损害的纵向激光荧光研究[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 轩东英. 不同赋形剂对氢氧化钙抗菌效果的影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[7] 房兵. 唇腭裂新生儿前颌骨矫正方法及对上颌骨生长发育的影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[8] 赵艳丽. 手术刀、电凝、CO_2和KTP激光对大鼠舌部创口的作用[J]. 国际口腔医学杂志, 1999, 26(04): .
[9] 康健,华成舸. 术前诱导化疗在头颈部肿瘤预后评价中的意义[J]. 国际口腔医学杂志, 2008, 35(S1): .
[10] 唐翀,宣鸣. 软骨组织工程支架材料的研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .