国际口腔医学杂志 ›› 2017, Vol. 44 ›› Issue (3): 320-324.doi: 10.7518/gjkq.2017.03.014

• 综述 • 上一篇    下一篇

应用原子力显微镜对口腔变异链球菌黏附机制的研究

盖阔, 郝丽英, 蒋丽   

  1. 口腔疾病研究国家重点实验室,国家口腔疾病临床研究中心,四川大学华西口腔医院 成都 610041
  • 收稿日期:2016-07-22 修回日期:2017-03-12 出版日期:2017-05-01 发布日期:2017-05-01
  • 通讯作者: 蒋丽,副教授,博士,Email:echojiang999@yahoo.com.cn
  • 作者简介:盖阔,学士,Email:drgaikuo@163.com
  • 基金资助:
    国家自然科学基金(31200720); 四川省科技计划项目(2016FZ0069)

Study of the adhesion mechanism of oral Streptococcus mutans based on atomic force microscope

Gai Kuo, Hao Liying, Jiang Li.   

  1. State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2016-07-22 Revised:2017-03-12 Online:2017-05-01 Published:2017-05-01
  • Supported by:
    This study was supported by National Natural Science Foundation of China(31200720) and The Planned Science and Technology Project of Sichuan Province(2016FZ0069).

摘要: 原子力显微镜(AFM)是一种理想的探测细菌与生物材料之间基本相互作用力及研究微生态系统形态和力学的工具,被应用于包括口腔变异链球菌在内的多种微生物的形态及力学研究中。本文就AFM在口腔变异链球菌黏附研究中的应用及在相关黏附机制、黏附影响因素等方面的研究成果进行综述,总结阐述口腔变异链球菌黏附的分子生物学机制,为细菌黏附的研究提供力学基础及新思路。

关键词: 原子力显微镜, 变异链球菌, 细菌黏附

Abstract: Atomic force microscope(AFM) is an ideal tool for detecting the fundamental interactions between bacteria and biomaterials and studying the morphology and mechanics of microsystems including oral Streptococcus mutans. In this paper, the application of AFM in study of the adhesion mechanisms and influencing factors are reviewed, which summarizes the molecular mechanism of the adhesion of oral Streptococcus mutans. Thus, it provides mechanical basis and a new way for studying bacterial adhesion.

Key words: atomic force microscope, Streptococcus mutans, bacterial adhesion

中图分类号: 

  • R37
[1] Dufrêne YF. Atomic force microscopy in microbio-logy: new structural and functional insights into the microbial cell surface[J]. MBio, 2014, 5(4):e01314- e01363.
[2] Das T, Sharma PK, Krom BP, et al. Role of eDNA on the adhesion forces between Streptococcus mutans and substratum surfaces: influence of ionic strength and substratum hydrophobicity[J]. Langmuir, 2011, 27(16):10113-10118.
[3] Dorobantu LS, Gray MR. Application of atomic force microscopy in bacterial research[J]. Scanning, 2010, 32(2):74-96.
[4] Louise Meyer R, Zhou X, Tang L, et al. Immobilisa-tion of living bacteria for AFM imaging under phy-siological conditions[J]. Ultramicroscopy, 2010, 110 (11):1349-1357.
[5] Lonergan NE, Britt LD, Sullivan CJ. Immobilizing live Escherichia coli for AFM studies of surface dynamics[J]. Ultramicroscopy, 2014, 137:30-39.
[6] Kang S, Elimelech M. Bioinspired single bacterial cell force spectroscopy[J]. Langmuir, 2009, 25(17): 9656-9659.
[7] Stukalov O, Korenevsky A, Beveridge TJ, et al. Use of atomic force microscopy and transmission elec-tron microscopy for correlative studies of bacterial capsules[J]. Appl Environ Microbiol, 2008, 74(17): 5457-5465.
[8] Suo Z, Yang X, Deliorman M, et al. Capture eff-iciency of Escherichia coli in fimbriae-mediated immunoimmobilization[J]. Langmuir, 2012, 28(2): 1351-1359.
[9] Potthoff E, Ossola D, Zambelli T, et al. Bacterial adhesion force quantification by fluidic force micro-scopy[J]. Nanoscale, 2015, 7(9):4070-4079.
[10] Cross SE, Kreth J, Zhu L, et al. Atomic force mic-roscopy study of the structure-function relationships of the biofilm-forming bacterium Streptococcus mutans [J]. Nanotechnology, 2006, 17(4):S1-S7.
[11] Busscher HJ, Van De Belt-Gritter B, Dijkstra RJ, et al. Intermolecular forces and enthalpies in the ad-hesion of Streptococcus mutans and an antigen Ⅰ/Ⅱ- deficient mutant to laminin films[J]. J Bacteriol, 2007, 189(8):2988-2995.
[12] Mei L, Van Der Mei HC, Ren Y, et al. Poisson ana-lysis of streptococcal bond strengthening on stainless steel with and without a salivary conditioning film [J]. Langmuir, 2009, 25(11):6227-6231.
[13] Mei L, Busscher HJ, Van Der Mei HC, et al. Oral bacterial adhesion forces to biomaterial surfaces constituting the bracket-adhesive-enamel junction in orthodontic treatment[J]. Eur J Oral Sci, 2009, 117 (4):419-426.
[14] Zheng P, Cao Y, Bu T, et al. Single molecule force spectroscopy reveals that electrostatic interactions affect the mechanical stability of proteins[J]. Bio-phys J, 2011, 100(6):1534-1541.
[15] Larson MR, Rajashankar KR, Crowley PJ, et al. Crystal structure of the C-terminal region of Strep-tococcus mutans antigen Ⅰ/Ⅱ and characterization of salivary agglutinin adherence domains[J]. J Biol Chem, 2011, 286(24):21657-21666.
[16] Guo L, Wu T, Hu W, et al. Phenotypic characteriza-tion of the foldase homologue PrsA in Streptococcus mutans [J]. Mol Oral Microbiol, 2013, 28(2):154- 165.
[17] Matsumoto-Nakano M, Nagayama K, Kitagori H, et al. Inhibitory effects of Oenothera biennis(evening primrose) seed extract on Streptococcus mutans and S. mutans -induced dental caries in rats[J]. Caries Res, 2011, 45(1):56-63.
[18] Sullan RM, Li JK, Crowley PJ, et al. Binding forces of Streptococcus mutans P1 adhesin[J]. ACS Nano, 2015, 9(2):1448-1460.
[19] Klein MI, Hwang G, Santos PH, et al. Streptococcus mutans -derived extracellular matrix in cariogenic oral biofilms[J]. Front Cell Infect Microbiol, 2015, 5:10.
[20] Heim KP, Crowley PJ, Long JR, et al. An intramo-lecular lock facilitates folding and stabilizes the tertiary structure of Streptococcus mutans adhesin P1[J]. Proc Natl Acad Sci U S A, 2014, 111(44): 15746-15751.
[21] Bowen WH, Koo H. Biology of Streptococcus mutans -derived glucosyltransferases: role in extrace-llular matrix formation of cariogenic biofilms[J]. Caries Res, 2011, 45(1):69-86.
[22] Wang C, Zhao Y, Zheng S, et al. Effect of enamel morphology on nanoscale adhesion forces of strep-tococcal bacteria: an AFM study[J]. Scanning, 2015, 37(5):313-321.
[23] Verran J, Jackson S, Coulthwaite L, et al. The effect of dentifrice abrasion on denture topography and the subsequent retention of microorganisms on abraded surfaces[J]. J Prosthet Dent, 2014, 112(6):1513- 1522.
[24] Mei L, Busscher HJ, Van Der Mei HC, et al. In-fluence of surface roughness on streptococcal adhe-sion forces to composite resins[J]. Dent Mater, 2011, 27(8):770-778.
[25] Pita PP, Rodrigues JA, Ota-Tsuzuki C, et al. Oral Streptococci biofilm formation on different implant surface topographies[J]. Biomed Res Int, 2015, 2015:159625.
[26] Hsiao SW, Venault A, Yang HS, et al. Bacterial resistance of self-assembled surfaces using PPOm-b-PSBMAn zwitterionic copolymer-concomitant effects of surface topography and surface chemistry on attachment of live bacteria[J]. Colloids Surf B Bioin-terfaces, 2014, 118:254-260.
[27] Ionescu A, Brambilla E, Wastl DS, et al. Influence of matrix and filler fraction on biofilm formation on the surface of experimental resin-based composites [J]. J Mater Sci Mater Med, 2015, 26(1):5372.
[28] Loskill P, Zeitz C, Grandthyll S, et al. Reduced adhesion of oral bacteria on hydroxyapatite by fluo-ride treatment[J]. Langmuir, 2013, 29(18):5528- 5533.
[1] 冯旭,张祎,李梦红,刘楠,王六一,胡敏. 无托槽隐形矫治对牙周健康影响的研究进展[J]. 国际口腔医学杂志, 2019, 46(2): 166-170.
[2] 刘梦齐,盖阔,蒋丽. 抗菌性口腔种植材料的研究进展[J]. 国际口腔医学杂志, 2018, 45(5): 516-521.
[3] 王静,王艳,王川东,黄睿洁,田燕,胡玮,邹静. 甘草及其提取物在防治口腔感染相关疾病中的应用[J]. 国际口腔医学杂志, 2018, 45(5): 546-552.
[4] 刘琨,侯本祥. 粪肠球菌和变异链球菌脂磷壁酸的生物学活性[J]. 国际口腔医学杂志, 2017, 44(1): 118-124.
[5] 刘诗雨,何金枝,李明云. 白假丝酵母菌与龋病的相关性及其致龋机制[J]. 国际口腔医学杂志, 2017, 44(1): 103-107.
[6] 张鹰 李明勇 霍丽 孟媛. 变异链球菌自诱导物2信号分子的体外合成与活性检测[J]. 国际口腔医学杂志, 2016, 43(5): 519-523.
[7] 赵兴福,江山,黄晓晶,闫福华. 变异链球菌临床株表面相关蛋白表达差异的初步分析[J]. 国际口腔医学杂志, 2016, 43(3): 273-277.
[8] 王一舟,张雅琪,牛雪微,张志民. 变异链球菌groE操纵子及其表达与调控[J]. 国际口腔医学杂志, 2016, 43(3): 348-351.
[9] 郑赛男,蒋丽,李伟. 口腔细菌黏附机制的研究进展[J]. 国际口腔医学杂志, 2016, 43(2): 223-227.
[10] 石晶,闫征斌,侯景秋,彭惠. 无托槽隐形矫治与传统固定矫治对牙周变异链球菌和牙龈卟啉单胞菌的影响[J]. 国际口腔医学杂志, 2016, 43(2): 151-154.
[11] 刘奕1 费伟1 王丽娜2 张思宇3 王艳君1 吴红崑4. 十肽对变异链球菌生物膜生长和结构影响的实验研究[J]. 国际口腔医学杂志, 2015, 42(4): 401-405.
[12] 宋颖 邹玲. 胶原层粘连结合蛋白的结构和功能及防治策略[J]. 国际口腔医学杂志, 2015, 42(4): 466-470.
[13] 张剑英 凌均棨. 表面蛋白抗原P及其在变异链球菌生物膜形成中的作用[J]. 国际口腔医学杂志, 2015, 42(1): 111-113.
[14] 方力 刘源 杨燃 邹静. 树脂充填前后唾液中变异链球菌的变化[J]. 国际口腔医学杂志, 2015, 42(1): 28-30.
[15] 黄萍 万呼春 何永红. 应激状态下的变异链球菌差异蛋白组学[J]. 国际口腔医学杂志, 2014, 41(1): 92-96.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张京剧. 青年期至中年期颅面复合体变化的头影测量研究[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 王昆润. 修补颌骨缺损的新型生物学相容材料[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 高卫民,李幸红. 发达国家牙医学院口腔种植学教学现状[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 彭国光. 颈淋巴清扫术中颈交感神经干的解剖变异[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 温秀杰. 氟化物对牙本质脱矿抑制作用的体外实验研究[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 轩东英. 不同赋形剂对氢氧化钙抗菌效果的影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[7] 汪月月,郭莉莉. 口腔机能与老化—痴呆危险因素流行病学研究[J]. 国际口腔医学杂志, 1999, 26(04): .
[8] 孟姝,吴亚菲,杨禾. 伴放线放线杆菌产生的细胞致死膨胀毒素及其与牙周病的关系[J]. 国际口腔医学杂志, 2005, 32(06): 458 -460 .
[9] . 第4届中日口腔医学大会征稿通知[J]. 国际口腔医学杂志, 2008, 35(S1): .
[10] 聂盼 李婧 李伟. Activator 治疗骨性Ⅱ类畸形的临床应用[J]. 国际口腔医学杂志, 2011, 38(4): 380 -383 .