Int J Stomatol ›› 2025, Vol. 52 ›› Issue (2): 246-256.doi: 10.7518/gjkq.2025028

• Reviews • Previous Articles     Next Articles

Research progress on phosphatidylinositol 3-kinase-mediated radioresistance in oral squamous cell carcinoma

Yanbei Lu1(),Zhengjuan Li1,Lei Lei2(),Jingjing Luo2   

  1. 1.State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & West China School of Stomatology, Sichuan University, Chengdu 610041, China
    2.State Key Laboratory of Oral Diseases & National Center for Stomatology & Natio-nal Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & Dept. of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2024-06-04 Revised:2024-12-07 Online:2025-03-01 Published:2025-03-01
  • Contact: Lei Lei E-mail:lu_yanbei@163.com;leilei@scu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(82001061);Sichuan Natural Science Foundation(2022NSFSC1377);Research Funding from West China School/Hospital of Stomatology, Sichuan University(RCDWJS2024-9)

Abstract:

Oral squamous cell carcinoma (OSCC) is the most common type of malignant tumors in craniofacial region with a high malignancy. Radiotherapy, a vital means of integrated sequential therapy for OSCC, often has good treating efficacy for primary tumor. However, it still remains susceptible to the incidence of tumor recurrence and metastasis with high mortality post-radiotherapy. The main reason lies in the significant radioresistance of partial OSCC. The cancer cells survived from Radiotherapy are able to obtain enhanced proliferation, invasion and migration, occur epithelial-mesenchymal transformation, and even acquire cancer stem cell phenotype. Phosphatidylinositol 3-kinase/protein kinase B (PI3K/PKB, often known as PI3K/Akt) signaling pathway and its signaling components widely engaged in regulating the development and prognosis of OSCC, has been reported to promote radioresistance of OSCC when activated. However, the specific mechanism still needs further identification. This review focuses on the mechanism of PI3K signaling and radioresistance in OSCC, and summarize the current research progress from three aspects including cancer cell, cancer stem cell and tumor microenvironment, to discuss the molecular mechanism of PI3K-mediated radioresistance, hoping to provide effective potential molecular target for better radiosensitivity and prognosis of OSCC.

Key words: oral squamous cell carcinoma, radiotherapy, radioresistance, phosphatidylinositol 3-kinase

CLC Number: 

  • R739.8

TrendMD: 

Fig 1

The mechanism of radioresistance in OSCC mediated by PI3K signaling pathway"

1 陈新, 徐文华, 周健, 等. 口腔鳞状细胞癌现状[J]. 口腔医学, 2017, 37(5): 462-465.
Chen X, Xu WH, Zhou J, et al. Current situation of oral squamous cell carcinoma[J]. Stomatology, 2017, 37(5): 462-465.
2 Pfister DG, Spencer S, Adelstein D, et al. Head and neck cancers, version 2.2020, NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2020, 18(7): 873-898.
3 Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.
4 Chi AC, Day TA, Neville BW. Oral cavity and oropharyngeal squamous cell carcinoma: an update[J]. CA Cancer J Clin, 2015, 65(5): 401-421.
5 Colevas AD, Yom SS, Pfister DG, et al. NCCN guidelines insights: head and neck cancers, version 1.2018[J]. J Natl Compr Canc Netw, 2018, 16(5): 479-490.
6 Feller G, Khammissa RAG, Nemutandani MS, et al. Biological consequences of cancer radiotherapy in the context of oral squamous cell carcinoma[J]. Head Face Med, 2021, 17(1): 35.
7 Liu YF, Yang M, Luo JJ, et al. Radiotherapy targe-ting cancer stem cells “awakens” them to induce tumour relapse and metastasis in oral cancer[J]. Int J Oral Sci, 2020, 12(1): 19.
8 An LB, Li MY, Jia QG. Mechanisms of radiotherapy resistance and radiosensitization strategies for esophageal squamous cell carcinoma[J]. Mol Cancer, 2023, 22(1): 140.
9 Yu L, Wei J, Liu PD. Attacking the PI3K/Akt/mTOR signaling pathway for targeted therapeutic treatment in human cancer[J]. Semin Cancer Biol, 2022, 85: 69-94.
10 Olivares-Urbano MA, Griñán-Lisón C, Marchal JA, et al. CSC radioresistance: a therapeutic challenge to improve radiotherapy effectiveness in cancer[J]. Cells, 2020, 9(7): 1651.
11 Yamamoto VN, Thylur DS, Bauschard M, et al. Overcoming radioresistance in head and neck squamous cell carcinoma[J]. Oral Oncol, 2016, 63: 44-51.
12 陈树伟, 杨安奎, 张诠, 等. 单中心24年1 915例口腔鳞癌的临床病理特征和生存分析[J]. 口腔疾病防治, 2020, 28(8): 487-493.
Chen SW, Yang AK, Zhang Q, et al. Analysis of clinicopathological characteristics and survival of 1 915 oral cavity squamous cell carcinoma patients: 24-year experience from a single institution[J]. J Dent Prev Treat, 2020, 28(8): 487-493.
13 Schaue D, McBride WH. Opportunities and challenges of radiotherapy for treating cancer[J]. Nat Rev Clin Oncol, 2015, 12(9): 527-540.
14 Cai MJ, Zheng ZC, Bai ZB, et al. Overexpression of angiogenic factors and matrix metalloproteinases in the saliva of oral squamous cell carcinoma patients: potential non-invasive diagnostic and therapeutic biomarkers[J]. BMC Cancer, 2022, 22(1): 530.
15 Pajonk F, Vlashi E, McBride WH. Radiation resistance of cancer stem cells: the 4 R’s of radiobiology revisited[J]. Stem Cells, 2010, 28(4): 639-648.
16 Liu YF, Sun TX, Yang J, et al. Fractionated irradiation induces radioresistant oral carcinoma cells with enhanced malignant phenotypes[J]. Arch Oral Biol, 2024, 164: 105988.
17 He Y, Sun MM, Zhang GG, et al. Targeting PI3K/Akt signal transduction for cancer therapy[J]. Signal Transduct Target Ther, 2021, 6(1): 425.
18 Fruman DA, Chiu H, Hopkins BD, et al. The PI3K pathway in human disease[J]. Cell, 2017, 170(4): 605-635.
19 Lee SY, Jeong EK, Ju MK, et al. Induction of metastasis, cancer stem cell phenotype, and oncogenic metabolism in cancer cells by ionizing radiation[J]. Mol Cancer, 2017, 16(1): 10.
20 Martins F, de Sousa SC, dos Santos E, et al. PI3K-AKT-mTOR pathway proteins are differently expressed in oral carcinogenesis[J]. J Oral Pathol Med, 2016, 45(10): 746-752.
21 Tashiro K, Oikawa M, Miki Y, et al. Immunohistochemical assessment of growth factor signaling mo-lecules: MAPK, Akt, and STAT3 pathways in oral epithelial precursor lesions and squamous cell carcinoma[J]. Odontology, 2020, 108(1): 91-101.
22 Liu L, Chen JL, Cai XJ, et al. Progress in targeted therapeutic drugs for oral squamous cell carcinoma[J]. Surg Oncol, 2019, 31: 90-97.
23 Roy NK, Monisha J, Padmavathi G, et al. Isoform-specific role of Akt in oral squamous cell carcinoma[J]. Biomolecules, 2019, 9(7): 253.
24 Harsha C, Banik K, Ang HL, et al. Targeting AKT/mTOR in oral cancer: mechanisms and advances in clinical trials[J]. Int J Mol Sci, 2020, 21(9): 3285.
25 王玉洁, 范迪, 施俊. Buparlisib通过PI3K/AKT通路调控人口腔鳞状细胞癌细胞增殖和凋亡的研究[J]. 临床口腔医学杂志, 2021, 37(1): 15-18.
Wang YJ, Fan D, Shi J. Effects of Buparlisib on human oral squamous cell carcinoma cell proliferation and apoptosis via PI3K/AKT signaling in vitro [J]. J Clin Stomatol, 2021, 37(1): 15-18.
26 Liao DJ, Thakur A, Wu J, et al. Perspectives on c-Myc, Cyclin D1, and their interaction in cancer formation, progression, and response to chemotherapy[J]. Crit Rev Oncog, 2007, 13(2): 93-158.
27 Li HM, Yang JG, Liu ZJ, et al. Blockage of glycolysis by targeting PFKFB3 suppresses tumor growth and metastasis in head and neck squamous cell carcinoma[J]. J Exp Clin Cancer Res, 2017, 36(1): 7.
28 Stewart J, Siavash H, Hebert C, et al. Phenotypic switching of VEGF and collagen Ⅹ Ⅷ during hypo-xia in head and neck squamous carcinoma cells[J]. Oral Oncol, 2003, 39(8): 862-869.
29 White ES, Sagana RL, Booth AJ, et al. Control of fibroblast fibronectin expression and alternative splicing via the PI3K/Akt/mTOR pathway[J]. Exp Cell Res, 2010, 316(16): 2644-2653.
30 Nguyen KA, DePledge LN, Bian L, et al. Polymorphonuclear myeloid-derived suppressor cells and phosphatidylinositol-3 kinase gamma are critical to tobacco-mimicking oral carcinogenesis in mice[J]. J Immunother Cancer, 2023, 11(9): e007110.
31 Gomez KE, Wu FL, Keysar SB, et al. Cancer cell CD44 mediates macrophage/monocyte-driven regulation of head and neck cancer stem cells[J]. Cancer Res, 2020, 80(19): 4185-4198.
32 黄国定, 潘敏丽, 卢宏全, 等. 基于PI3K/Akt信号通路探讨BRCA1缺失对乳腺癌细胞放射敏感性的影响[J]. 华南国防医学杂志, 2022, 36(6): 411-416, 456.
Huang GD, Pan ML, Lu HQ, et al. Study on the effects of BRCA1 gene deletion on the radiosensitivity of breast cancer based on PI3K/Akt signaling pathway[J]. Mil Med J South China, 2022, 36(6): 411-416, 456.
33 唐淳翰. DNAJC19通过PI3K/AKT信号调节自噬参与人NSCLC的放射敏感性研究[D]. 成都: 成都医学院, 2023.
Tang CH. DNAJC19 regulates autophagy via PI3K/AKT signaling pathway in the radiosensitivity of NSCLC[D]. Chengdu: Chengdu Medical College, 2023.
34 Deng H, Chen YM, Wang L, et al. PI3K/mTOR inhibitors promote G6PD autophagic degradation and exacerbate oxidative stress damage to radiosensitize small cell lung cancer[J]. Cell Death Dis, 2023, 14(10): 652.
35 Xu SB, Li Y, Lu YW, et al. LZTS2 inhibits PI3K/AKT activation and radioresistance in nasopharyngeal carcinoma by interacting with p85[J]. Cancer Lett, 2018, 420: 38-48.
36 Barker HE, Paget JT, Khan AA, et al. The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence[J]. Nat Rev Cancer, 2015, 15(7): 409-425.
37 You GR, Cheng AJ, Lee LY, et al. Prognostic signature associated with radioresistance in head and neck cancer via transcriptomic and bioinformatic analyses[J]. BMC Cancer, 2019, 19(1): 64.
38 赵晓苇, 周静萍, 毕于蓝, 等. PI3K/AKT信号通路在促进口腔鳞癌侵袭转移中的作用[J]. 皖南医学院学报, 2019, 38(1): 75-79.
Zhao XW, Zhou JP, Bi YL, et al. Role of PI3K/AKT signaling pathway in promoting invasion and metastasis of oral squamous cell carcinoma[J]. J Wannan Med Coll, 2019, 38(1): 75-79.
39 Network CGA. Comprehensive genomic characte-rization of head and neck squamous cell carcinomas[J]. Nature, 2015, 517(7536): 576-582.
40 Pectasides E, Founztilas G, Sasaki C, et al. Assessment of phosphatidylinositol-3 kinase (PI3K) as a prognostic marker in head and neck squamous cell carcinoma (HNSCC) [J]. J Clin Oncol, 2009, 27(): e17028.
41 Ferreira DM, Neves TJ, Lima LGCA, et al. Prognostic implications of the phosphatidylinositol 3-kinase/Akt signaling pathway in oral squamous cell carcinoma: overexpression of p-mTOR indicates an adverse prognosis[J]. Appl Cancer Res, 2017, 37(1): 41.
42 de Kort WWB, de Ruiter EJ, Haakma WE, et al. P-mTOR, p-ERK and pten expression in tumor biopsies and organoids as predictive biomarkers for patients with HPV negative head and neck cancer[J]. Head Neck Pathol, 2023, 17(3): 697-707.
43 Chang HC, Yang CC, Loi LK, et al. Interplay of p62-mTORC1 and EGFR signaling promotes cisplatin resistance in oral cancer[J]. Heliyon, 2024, 10(6): e28406.
44 Guo T, Zamuner F, Ting S, et al. Clinical and genomic characterization of chemoradiation-resistant HPV-positive oropharyngeal squamous cell carcinoma[J]. Front Oncol, 2024, 14: 1336577.
45 Sacconi A, Muti, Pulito C, et al. Immunosignatures associated with TP53 status and co-mutations classify prognostically head and neck cancer patients[J]. Mol Cancer, 2023, 22(1): 192.
46 王雨, 刘霞, 贾永峰, 等. 口腔鳞状细胞癌中CXCL12/CXCR4和PI3K/AKT蛋白表达与淋巴结转移的关系[J]. 临床与病理杂志, 2021, 41(5): 977-983.
Wang Y, Liu X, Jia YF, et al. Relationship between the protein expression of CXCL12/CXCR4 and PI3K/AKT and lymph node metastasis in oral squamous cell carcinoma[J]. J Clin Pathol Res, 2021, 41(5): 977-983.
47 Tarquinio SB, Zhang ZC, Neiva KG, et al. Endothelial cell Bcl-2 and lymph node metastasis in patients with oral squamous cell carcinoma[J]. J Oral Pathol Med, 2012, 41(2): 124-130.
48 Yu CC, Huang HB, Hung SK, et al. AZD2014 radiosensitizes oral squamous cell carcinoma by inhibi-ting AKT/mTOR axis and inducing G1/G2/M cell cycle arrest[J]. PLoS One, 2016, 11(3): e0151942.
49 Yu CC, Hung SK, Lin HY, et al. Targeting the PI3K/AKT/mTOR signaling pathway as an effectively radiosensitizing strategy for treating human oral squamous cell carcinoma in vitro and in vivo [J]. Oncotarget, 2017, 8(40): 68641-68653.
50 Day D, Prawira A, Spreafico A, et al. Phase Ⅰ trial of alpelisib in combination with concurrent cisplatin-based chemoradiotherapy in patients with locoregionally advanced squamous cell carcinoma of the head and neck[J]. Oral Oncol, 2020, 108: 104753.
51 Gemenetzidis E, Gammon L, Biddle A, et al. Invasive oral cancer stem cells display resistance to ionising radiation[J]. Oncotarget, 2015, 6(41): 43964-43977.
52 Lindemann A, Takahashi H, Patel AA, et al. Targe-ting the DNA damage response in OSCC with TP53 mutations[J]. J Dent Res, 2018, 97(6): 635-644.
53 Ganci F, Pulito C, Valsoni S, et al. PI3K inhibitors curtail MYC-dependent mutant p53 gain-of-function in head and neck squamous cell carcinoma[J]. Clin Cancer Res, 2020, 26(12): 2956-2971.
54 Hong CR, Liew LP, Wong WW, et al. Identification of 6-anilino imidazo[4, 5-c]pyridin-2-ones as selective DNA-dependent protein kinase inhibitors and their application as radiosensitizers[J]. J Med Chem, 2024, 67(14): 12366-12385.
55 Nisa L, Francica P, Giger R, et al. Targeting the MET receptor tyrosine kinase as a strategy for radiosensitization in locoregionally advanced head and neck squamous cell carcinoma[J]. Mol Cancer Ther, 2020, 19(2): 614-626.
56 Glorieux M, Dok R, Nuyts S. The influence of PI3K inhibition on the radiotherapy response of head and neck cancer cells[J]. Sci Rep, 2020, 10(1): 16208.
57 Lugano R, Ramachandran M, Dimberg A. Tumor angiogenesis: causes, consequences, challenges and opportunities[J]. Cell Mol Life Sci, 2020, 77(9): 1745-1770.
58 Lee SH, Hong HS, Liu ZX, et al. TNFα enhances cancer stem cell-like phenotype via Notch-Hes1 activation in oral squamous cell carcinoma cells[J]. Biochem Biophys Res Commun, 2012, 424(1): 58-64.
59 Liu YY, Shen L, Li Y, et al. ETS1-mediated regulation of SOAT1 enhances the malignant phenotype of oral squamous cell carcinoma and induces tumor-associated macrophages M2-like polarization[J]. Int J Biol Sci, 2024, 20(9): 3372-3392.
60 Bienkowska KJ, Hanley CJ, Thomas GJ. Cancer-associated fibroblasts in oral cancer: a current perspective on function and potential for therapeutic targe-ting[J]. Front Oral Health, 2021, 2: 686337.
61 Piper M, Mueller AC, Karam SD. The interplay between cancer associated fibroblasts and immune cells in the context of radiation therapy[J]. Mol Carcinog, 2020, 59(7): 754-765.
62 Liu YF, Wu Y, Yang M, et al. Ionizing radiation-induced “zombie” carcinoma-associated fibroblasts with suppressed pro-radioresistance on OSCC cells[J]. Oral Dis, 2023, 29(2): 563-573.
63 Zhang XX, Dong YC, Zhao MX, et al. ITGB2-me-diated metabolic switch in CAFs promotes OSCC proliferation by oxidation of NADH in mitochondrial oxidative phosphorylation system[J]. Theranostics, 2020, 10(26): 12044-12059.
64 Ferreira Mendes JM, de Faro Valverde L, Torres Andion Vidal M, et al. Effects of IGF-1 on proliferation, angiogenesis, tumor stem cell populations and activation of AKT and hedgehog pathways in oral squamous cell carcinoma[J]. Int J Mol Sci, 2020, 21(18): 6487.
65 de Sanctis F, Ugel S, Facciponte J, et al. The dark side of tumor-associated endothelial cells[J]. Semin Immunol, 2018, 35: 35-47.
66 Duarte A, André-Grégoire G, Trillet K, et al. Inhibition of mTOR in head and neck cancer cells alters endothelial cell morphology in a paracrine fashion[J]. Mol Carcinog, 2019, 58(1): 161-168.
67 Zhou H, Yang YH, Binmadi NO, et al. The hypoxia-inducible factor-responsive proteins semaphorin 4D and vascular endothelial growth factor promote tumor growth and angiogenesis in oral squamous cell carcinoma[J]. Exp Cell Res, 2012, 318(14): 1685-1698.
68 Weichselbaum RR, Liang H, Deng LF, et al. Radiotherapy and immunotherapy: a beneficial liaison[J]. Nat Rev Clin Oncol, 2017, 14(6): 365-379.
69 Mirghani H, Amen F, Tao YG, et al. Increased radiosensitivity of HPV-positive head and neck cancers: molecular basis and therapeutic perspectives[J]. Cancer Treat Rev, 2015, 41(10): 844-852.
70 Chandrasekaran S, Sasaki M, Scharer CD, et al. Phosphoinositide 3-kinase signaling can modulate MHC Class Ⅰ and Ⅱ expression[J]. Mol Cancer Res, 2019, 17(12): 2395-2409.
71 Yoon YN, Lee E, Kwon YJ, et al. PI3Kδ/γ inhibitor BR101801 extrinsically potentiates effector CD8+ T cell-dependent antitumor immunity and abscopal effect after local irradiation[J]. J Immunother Cancer, 2022, 10(3): e003762.
72 Skinner HD, Giri U, Yang LP, et al. Integrative ana-lysis identifies a novel AXL-PI3 kinase-PD-L1 signaling axis associated with radiation resistance in head and neck cancer[J]. Clin Cancer Res, 2017, 23(11): 2713-2722.
73 Shayan G, Srivastava R, Li J, et al. Adaptive resistance to anti-PD1 therapy by Tim-3 upregulation is mediated by the PI3K-Akt pathway in head and neck cancer[J]. Oncoimmunology, 2017, 6(1): e1261779.
74 Peng MJ, Fan SQ, Li JJ, et al. Programmed death-ligand 1 signaling and expression are reversible by lycopene via PI3K/AKT and Raf/MEK/ERK pathways in tongue squamous cell carcinoma[J]. Genes Nutr, 2022, 17(1): 3.
75 Pore N, Gupta AK, Cerniglia GJ, et al. Nelfinavir down-regulates hypoxia-inducible factor 1alpha and VEGF expression and increases tumor oxygenation: implications for radiotherapy[J]. Cancer Res, 2006, 66(18): 9252-9259.
76 Nascimento-Filho CHV, Webber LP, Borgato GB, et al. Hypoxic niches are endowed with a protumorigenic mechanism that supersedes the protective function of PTEN[J]. FASEB J, 2019, 33(12): 13435-13449.
77 Kelly CJ, Hussien K, Fokas E, et al. Regulation of O2 consumption by the PI3K and mTOR pathways contributes to tumor hypoxia[J]. Radiother Oncol, 2014, 111(1): 72-80.
78 Bao YY, Zhong JT, Shen LF, et al. Effect of Glut-1 and HIF-1α double knockout by CRISPR/CAS9 on radiosensitivity in laryngeal carcinoma via the PI3K/Akt/mTOR pathway[J]. J Cell Mol Med, 2022, 26(10): 2881-2894.
79 dos Santos ES, Ramos JC, Roza ALOC, et al. The role of osteopontin in oral cancer: a brief review with emphasis on clinical applications[J]. Oral Dis, 2022, 28(2): 326-335.
80 de Bem Prunes B, Nunes JS, da Silva VP, et al. The role of tumor acidification in aggressiveness, cell dissemination and treatment resistance of oral squamous cell carcinoma[J]. Life Sci, 2022, 288: 120163.
81 Hanahan D. Hallmarks of cancer: new dimensions[J]. Cancer Discov, 2022, 12(1): 31-46.
82 Lien EC, Lyssiotis CA, Cantley LC. Metabolic reprogramming by the PI3K-Akt-mTOR pathway in cancer[J]. Recent Results Cancer Res, 2016, 207: 39-72.
83 Li ZG, Liu JY, Que L, et al. The immunoregulatory protein B7-H3 promotes aerobic glycolysis in oral squamous carcinoma via PI3K/Akt/mTOR pathway[J]. J Cancer, 2019, 10(23): 5770-5784.
84 贺媛, 吴桐, 胡钦朝, 等. 放射对口腔鳞癌细胞DNA损伤和糖酵解的影响[J]. 中华老年口腔医学杂志, 2016, 14(4): 193-198.
He Y, Wu T, Hu QZ, et al. Effects of radiation on DNA damage and glycolysis of oral squamous cell carcinoma[J]. Chin J Geriatr Dent, 2016, 14(4): 193-198.
85 Cheng J, Huang Y, Zhang XH, et al. TRIM21 and PHLDA3 negatively regulate the crosstalk between the PI3K/AKT pathway and PPP metabolism[J]. Nat Commun, 2020, 11(1): 1880.
86 Ogawa T, Washio J, Takahashi T, et al. Glucose and glutamine metabolism in oral squamous cell carcinoma: insight from a quantitative metabolomic approach[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2014, 118(2): 218-225.
87 Mims J, Bansal N, Bharadwaj MS, et al. Energy metabolism in a matched model of radiation resistance for head and neck squamous cell cancer[J]. Radiat Res, 2015, 183(3): 291-304.
88 Smith AE, Chan S, Wang ZY, et al. Tipifarnib potentiates the antitumor effects of PI3Kα inhibition in PIK3CA- and HRAS-dysregulated HNSCC via convergent inhibition of mTOR activity[J]. Cancer Res, 2023, 83(19): 3252-3263.
[1] Jingzhe Li, Suxin Zhang. Progress in research on phosphoinositide 3-kinase/protein kinase B pathway inhibitors in oral squamous cell carcinoma [J]. Int J Stomatol, 2025, 52(1): 34-41.
[2] Bingzhi Li, Yunkun Liu, Wenxuan Wang, Zeyu Hou, Jinru Tang, Longjiang Li. Research progress on perineural invasion of oral squamous cell carcinoma [J]. Int J Stomatol, 2024, 51(3): 362-367.
[3] Wenxuan Wang,Yunkun Liu,Bingzhi Li,Nengwen Huang,Zeyu Hou,Jinru Tang,Longjiang Li. Role of advanced glycosylation end-products and their receptors in the progression and treatment of oral squamous cell carcinoma [J]. Int J Stomatol, 2024, 51(2): 208-216.
[4] He Zimu, Li Fenglan. Present application of digital oral positioning stents in radiotherapy of head and neck tumor [J]. Int J Stomatol, 2024, 51(1): 28-35.
[5] Zhou Jinkuo,Zhang Jinhong,Shi Xiaojing,Liu Guangshun,Jiang Lei,Liu Qianfeng. Influences of long noncoding RNA small nucleolar RNA host gene 22 on the cell proliferation, invasion and migration of oral squamous carcinoma cells by regulating microRNA-27b-3p [J]. Int J Stomatol, 2024, 51(1): 52-59.
[6] Li Liheng,Wang Rui,Wang Xiaoming,Zhang Zhiyi,Zhang Xuan,An Feng,Wang Qin,Zhang Fan. Effects of circular RNA hsa_circ_0085576 on cell migration and invasion of oral squamous cell carcinoma by regulating the microRNA-498/B-cell-specific Moloney murine leukemia virus integration site 1 axis [J]. Int J Stomatol, 2024, 51(1): 60-67.
[7] Wu Jiamin,Xia Bin,Yang Hefeng,Xu Biao.. Research progress on cancer-associated fibroblasts in the tumor microenvironment of oral squamous cell carcinoma [J]. Int J Stomatol, 2023, 50(6): 711-717.
[8] Liu Jianglong, Tuerdi Maimaitituxun. Progress of contrast-enhanced ultrasound in the diagnosis of cervical lymph node metastasis from oral squamous cell carcinoma [J]. Int J Stomatol, 2023, 50(5): 514-520.
[9] Sheng Nanning,Wang Jue,Nan Xinrong. Research progress on mechanism and treatment of sex-determining region Y box 9 in oral squamous cell carcinoma [J]. Int J Stomatol, 2023, 50(3): 314-320.
[10] Li Tan,Liang Xin-hua.. Role of discoidin domain receptor 1 in the regulation of malignant tumor progression and therapy [J]. Int J Stomatol, 2023, 50(2): 230-236.
[11] Yang Mingyan,Zhang Fan,Zhao Lei. Research progress on oral flora changes affecting the course of radiotherapy and chemotherapy-related oral mucositis [J]. Int J Stomatol, 2023, 50(1): 43-51.
[12] Chen Xiaoli,Zhang Fan,Liu Chengcheng. Application progress on photobiomodulation in the prevention and treatment of oral complications after radiothe-rapy [J]. Int J Stomatol, 2022, 49(6): 707-716.
[13] Li Hongfang,Chen Zhong,Zhang Suxin.. Research progress on immune checkpoint inhibitor combined with radiotherapy in head and neck squamous cell carcinoma [J]. Int J Stomatol, 2022, 49(5): 614-620.
[14] Zhao Zhuoping,Xin Pengfei,Gao Yang,Zhang Caifeng,Zhang Kuanshou,Liu Qingmei. Research progress on the use of photothermal therapy to treat oral squamous cell carcinoma [J]. Int J Stomatol, 2022, 49(4): 462-470.
[15] Jiang Han,Shen Yingqiang,Chen Qianming. Experimental study of muscarinic receptors on the biological behavior of oral squamous cell carcinoma through Yes related protein signal [J]. Int J Stomatol, 2022, 49(2): 138-143.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[9] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[10] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .