Int J Stomatol ›› 2025, Vol. 52 ›› Issue (2): 176-182.doi: 10.7518/gjkq.2025041

• Materials • Previous Articles     Next Articles

Recent progress in research on tooth bleaching materials

Xiaofan Su1,2(),Suru Liu1,2,Xingyu Hu1,2,Lei Liu1,2,Weidong Tian1,2,Li Xie1()   

  1. 1.State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, Chengdu 610041, China
    2.State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Dept. of Traumatic and Plastic Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2024-08-17 Revised:2024-12-16 Online:2025-03-01 Published:2025-03-01
  • Contact: Li Xie E-mail:steafan2020@163.com;samuelxie2023@gmail.com
  • Supported by:
    National Natural Science Foundation of China(32271415);National Key R&D Program of China(2022YFA1104400);Natural Science Foundation of Sichuan Province(2023NSFSC0561);Program of Department of Science and Technology of Sichuan Province(2022YFS0283)

Abstract:

Hydrogen peroxide is the primary functional component in tooth bleaching materials in clinical applications. Achieving effective bleaching outcomes typically necessitates the use of high concentrations of hydrogen peroxide or prolonged contact times. However, the application of high concentrations or prolonged contact times often results in adverse effects, such as tooth sensitivity, enamel damage, and soft tissue irritation, significantly constraining the clinical utility of tooth bleaching materials. In recent years, advanced oxidation processes have rapidly developed and are characterized by the generation of numerous strong oxidative free radicals or reactive oxygen species. This advancement provides new strategies and methods for the formulation of innovative tooth bleaching mate-rials to improve therapeutic effects while minimizing or avoiding associated complications. This article systematically reviews the research progress of novel tooth bleaching materials and presents results from assessments of material effectiveness and safety. Additionally, the article addresses existing research limitations and provides insights into potential directions for future studies.

Key words: tooth bleaching material, advanced oxidation process, Fenton-like reaction, photocatalysis, piezoelectric catalysis

CLC Number: 

  • R781

TrendMD: 
1 中华口腔医学会口腔修复学专业委员会. 牙齿漂白治疗技术指南[J]. 中华口腔医学杂志, 2021, 56(12): 1191-1196.
Society of Prosthodontics, Chinese Stomatological Association. Guideline of tooth bleaching technology[J]. Chin J Stomatol, 2021, 56(12): 1191-1196.
2 陈柳池, 蒋宏伟. 牙髓治疗后牙齿内源性着色的研究进展[J]. 中华口腔医学研究杂志(电子版), 2020, 14(4): 260-264.
Chen LC, Jiang HW. Reseach progress of intrinsic staining of tooth induced by endodontic treatment[J]. Chin J Stomatol Res (Electron Ed), 2020, 14(4): 260-264.
3 李刚. 着色牙: 外源性着色的原因与治疗[J]. 口腔护理用品工业, 2023, 33(2): 27-29.
Li G. Colored teeth: causes and treatment of exogenous coloring[J]. Oral Care Ind, 2023, 33(2): 27-29.
4 Gasmi Benahmed A, Gasmi A, Menzel A, et al. A review on natural teeth whitening[J]. J Oral Biosci, 2022, 64(1): 49-58.
5 Alkahtani R, Stone S, German M, et al. A review on dental whitening[J]. J Dent, 2020, 100: 103423.
6 Kwon SR, Wertz PW. Review of the mechanism of tooth whitening[J]. J Esthet Restor Dent, 2015, 27(5): 240-257.
7 Carey CM. Tooth whitening: what we now know[J]. J Evid Based Dent Pract, 2014, 14(): 70-76.
8 Dioguardi M, Quarta C, Spirito F, et al. Bleaching in vital teeth: a systematic review[J]. J Biol Reg Homeos Ag, 2022, 36(2): 295-304.
9 Redha O, Mazinanian M, Nguyen S, et al. Compromised dental cells viability following teeth-white-ning exposure[J]. Sci Rep, 2021, 11(1): 15547.
10 Tan XZ, Liu SR, Hu XY, et al. Near-infrared-enhanced dual enzyme-mimicking Ag-TiO2- x @Alginate microspheres with antibactericidal and oxyge-neration abilities to treat periodontitis[J]. ACS Appl Mater Interfaces, 2023, 15(1): 391-406.
11 Xu ZY, Hu XY, Xie L, et al. Visible light-induced photocatalytic chlorine activation enhanced the 0.5% neutral-NaClO/TiO2- x system as an efficient and safe root canal irrigant[J]. Chem Eng J, 2022, 431: 134119.
12 Chen JQ, Zhu ZY, Pan QY, et al. Targeted therapy of oral squamous cell carcinoma with cancer cell membrane coated co-fc nanoparticles via autophagy inhibition[J]. Adv Funct Materials, 2023, 33(24): 2300235.
13 Rodríguez-Martínez J, Valiente M, Sánchez-Martín MJ. Tooth whitening: from the established treatments to novel approaches to prevent side effects[J]. J Esthet Restor Dent, 2019, 31(5): 431-440.
14 薛舒尹, 叶玲. 活髓牙漂白引起牙齿敏感的研究进展[J]. 国际口腔医学杂志, 2017, 44(5): 602-607.
Xue SY, Ye L. Etiology and preventions of blea-ching sensitivity in vital tooth[J]. Int J Stomatol, 2017, 44(5): 602-607.
15 Grazioli G, Valente LL, Isolan CP, et al. Bleaching and enamel surface interactions resulting from the use of highly-concentrated bleaching gels[J]. Arch Oral Biol, 2018, 87: 157-162.
16 Quirynen M, Bollen CM. The influence of surface roughness and surface-free energy on supra- and subgingival plaque formation in man. A review of the literature[J]. J Clin Periodontol, 1995, 22(1): 1-14.
17 Alqahtani MQ. Tooth-bleaching procedures and their controversial effects: a literature review[J]. Saudi Dent J, 2014, 26(2): 33-46.
18 Carneiro TS, Favoreto MW, Bernardi LG, et al. Gingival irritation in patients submitted to at-home bleaching with different cutouts of the bleaching tray: a randomized, single-blind clinical trial[J]. Clin Oral Investig, 2022, 26(6): 4381-4390.
19 陈卓. 简述医疗废水处理中高级氧化技术应用[J]. 清洗世界, 2022, 38(10): 81-83.
Chen Z. Brief introduction to the application of advanced oxidation technology in medical wastewater treatment[J]. Clean World, 2022, 38(10): 81-83.
20 Glaze WH, Kang JW, Chapin DH. The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation[J]. Ozone Sci Eng, 1987, 9(4): 335-352.
21 Giannakis S. A review of the concepts, recent advances and niche applications of the (photo) Fenton process, beyond water/wastewater treatment: surface functionalization, biomass treatment, combatting cancer and other medical uses[J]. Appl Catal B Environ, 2019, 248: 309-319.
22 Anagnostaki E, Mylona V, Parker S, et al. Assessing the viability of laser-activated dental bleaching compared to conventional in-office bleaching methods: a systematic review of clinical and in vitro studies[J]. Appl Sci, 2023, 13(22): 12459.
23 Deger C, Mujdeci A. Whitening dentifrices: a review[J]. J Med Sci, 2021, 5: 355-360.
24 Ziembowicz S, Kida M. Limitations and future directions of application of the Fenton-like process in micropollutants degradation in water and wastewater treatment: a critical review[J]. Chemosphere, 2022, 296: 134041.
25 Thomas N, Dionysiou DD, Pillai SC. Heterogeneous Fenton catalysts: a review of recent advances[J]. J Hazard Mater, 2021, 404(Pt B): 124082.
26 Fenton HJH. L Ⅹ Ⅹ Ⅲ . Oxidation of tartaric acid in presence of iron[J]. J Chem Soc, Trans, 1894, 65: 899-910.
27 侯琳萌, 清华, 吉庆华. 类芬顿反应的催化剂、原理与机制研究进展[J]. 环境化学, 2022, 41(6): 1843-1855.
Hou LM, Qing H, Ji QH. Research progress on catalysts, principles and mechanisms of Fenton-like rea-ctions[J]. Environ Chem, 2022, 41(6): 1843-1855.
28 Tang ZM, Zhao PR, Wang H, et al. Biomedicine meets Fenton chemistry[J]. Chem Rev, 2021, 121(4): 1981-2019.
29 Lee BS, Huang LC, Hong CY, et al. Synthesis of metal ion-histidine complex functionalized mesoporous silica nanocatalysts for enhanced light-free tooth bleaching[J]. Acta Biomater, 2011, 7(5): 2276-2284.
30 Young N, Fairley P, Mohan V, et al. A study of hydrogen peroxide chemistry and photochemistry in tea stain solution with relevance to clinical tooth whitening[J]. J Dent, 2012, 40(): e11-e16.
31 Cuerda-Correa EM, Alexandre-Franco MF, Fernán-dez-González C. Advanced oxidation processes for the removal of antibiotics from water. An overview[J]. Water, 2019, 12(1): 102.
32 Hu XY, Xie L, Xu ZY, et al. Photothermal-enhanced Fenton-like catalytic activity of oxygen-deficient nanotitania for efficient and safe tooth whitening[J]. ACS Appl Mater Interfaces, 2021, 13(30): 35315-35327.
33 Liu M, Huang L, Xu XY, et al. Copper doped carbon dots for addressing bacterial biofilm formation, wound infection, and tooth staining[J]. ACS Nano, 2022, 16(6): 9479-9497.
34 Lee J, von Gunten U, Kim JH. Persulfate-based advanced oxidation: critical assessment of opportunities and roadblocks[J]. Environ Sci Technol, 2020, 54(6): 3064-3081.
35 Yang S, Sui BY, Liu X, et al. A novel tooth blea-ching gel based on peroxymonosulfate/polyphosphates advanced oxidation process: effective white-ning avoiding pulp damage and sensitivity[J]. Chem Eng J, 2022, 429: 132525.
36 Liu H, Wang CY, Wang GX. Photocatalytic advanced oxidation processes for water treatment: recent advances and perspective[J]. Chem Asian J, 2020, 15(20): 3239-3253.
37 Wang Y, Lin Y, He SY, et al. Singlet oxygen: properties, generation, detection, and environmental applications[J]. J Hazard Mater, 2024, 461: 132538.
38 Zhang F, Wu CX, Zhou ZY, et al. Blue-light-activa-ted nano-TiO2@PDA for highly effective and nondestructive tooth whitening[J]. ACS Biomater Sci Eng, 2018, 4(8): 3072-3077.
39 Omata Y, Lewis JB, Rotenberg S, et al. Intra- and extracellular reactive oxygen species generated by blue light[J]. J Biomed Mater Res A, 2006, 77(3): 470-477.
40 Yoshino F, Yoshida A. Effects of blue-light irradiation during dental treatment[J]. Jpn Dent Sci Rev, 2018, 54(4): 160-168.
41 Li Q, Liu JB, Xu YY, et al. Fast cross-linked hydrogel as a green light-activated photocatalyst for loca-lized biofilm disruption and brush-free tooth white-ning[J]. ACS Appl Mater Interfaces, 2022, 14(25): 28427-28438.
42 Miao XX, Yu F, Liu K, et al. High special surface a-rea and “warm light” responsive ZnO: synthesis mechanism, application and optimization[J]. Bioact Mater, 2022, 7: 181-191.
43 Konopka K, Goslinski T. Photodynamic therapy in dentistry[J]. J Dent Res, 2007, 86(8): 694-707.
44 Zhang H, Zhu YN, Li Y, et al. A bifunctional zwitterion-modified porphyrin for photodynamic nondestructive tooth whitening and biofilm eradication[J]. Adv Funct Materials, 2021, 31(42): 2104799.
45 Gu MJ, Jiang SS, Xu XY, et al. Simultaneous photodynamic eradication of tooth biofilm and tooth whi-tening with an aggregation-induced emission lumi-nogen[J]. Adv Sci, 2022, 9(20): e2106071.
46 Liu H, Chen YK, Mo LQ, et al. “Afterglow” photodynamic therapy based on carbon dots embedded silica nanoparticles for nondestructive teeth white-ning[J]. ACS Nano, 2023, 17(21): 21195-21205.
47 Tu S, Guo Y, Zhang Y, et al. Piezocatalysis and piezo-photocatalysis: catalysts classification and mo-dification strategy, reaction mechanism, and practical application[J]. Adv Funct Mater, 2020, 30(48): 2005158.
48 Chen S, Zhu P, Mao LJ, et al. Piezocatalytic medicine: an emerging frontier using piezoelectric materials for biomedical applications[J]. Adv Mater, 2023, 35(25): e2208256.
49 Wang Y, Wen XR, Jia YM, et al. Piezo-catalysis for nondestructive tooth whitening[J]. Nat Commun, 2020, 11(1): 1328.
50 Samachson J, Dennis J, Fowler R. Uptake of cal-cium, strontium, and barium by the surfaces of bone powder and bone mineral[J]. J Dent Res, 1968, 47(1): 121-126.
51 Deng SH, Zhang Y, Qiao ZS, et al. Hierarchically designed biodegradable polylactide particles with unprecedented piezocatalytic activity and biosafety for tooth whitening[J]. Biomacromolecules, 2023, 24(2): 797-806.
52 Benjakul P, Chuenarrom C. Association of dental enamel loss with the pH and titratable acidity of beverages[J]. J Dent Sci, 2011, 6(3): 129-133.
[1] Bin Chen,Fuhua Yan. Revisiting toothbrushing techniques: an evidence-based reflection [J]. Int J Stomatol, 2025, 52(2): 141-147.
[2] Zhao Lei, Jiang Shaoyun, Gao Li, Xu Xiaowei, Chen Bin. Toothbrushing methods and associated injuries [J]. Int J Stomatol, 2025, 52(2): 148-153.
[3] Jing Li,Jian Kang. Use of regenerated materials in periodontal minimally invasive surgery [J]. Int J Stomatol, 2025, 52(2): 161-168.
[4] Xinlu Dong,Laijun Xu,Jianying Zhang,Minmin Chen. Progress in research on the correlation of inflammatory pulpal and periapical disease to diabetes mellitus and rela-ted mechanisms [J]. Int J Stomatol, 2025, 52(2): 231-237.
[5] Meng Lu,Wenchuan Chen,Yi Gao. Strategies for preventing periodontal diseases in the restoration of subgingival tooth defects [J]. Int J Stomatol, 2025, 52(2): 238-245.
[6] Liangjun Zhong. Application of digital technology in the treatment of advanced periodontitis [J]. Int J Stomatol, 2025, 52(1): 1-10.
[7] Shouzheng Cheng,Taiwen Li,Lei Zhao. Research progress on the correlation between serum amyloid A and periodontitis [J]. Int J Stomatol, 2025, 52(1): 117-122.
[8] Hui He,Wenchao Liu,Jinbo Yang. Hemostasis management of microapical surgery [J]. Int J Stomatol, 2025, 52(1): 99-106.
[9] Jing Xue. Clinical applications of flowable composite injection technique [J]. Int J Stomatol, 2024, 51(6): 653-661.
[10] Mengjie Chen,Wenhua Xu,Qingqing Liu,Yudan Kang,Rong Liu,Lilei Zhu. Correlation analysis between the systemic immune-inflammatory index and graded diagnosis in patients with perio-dontitis [J]. Int J Stomatol, 2024, 51(6): 706-712.
[11] Mengxian Wang,Min Zhang,Jiyao Li. Developments in tooth bleaching agents [J]. Int J Stomatol, 2024, 51(6): 736-741.
[12] Rui Chen,Zhen Fan,Chunbo Hao. Research progress of absent in melanoma 2 inflammasome in periodontitis and diabetes [J]. Int J Stomatol, 2024, 51(6): 763-771.
[13] Shanglan Dong,Sha Leng,Qinghua Zheng,Lan Zhang,Dingming Huang. Application of metal-based nanoparticles in controlling root canal infections [J]. Int J Stomatol, 2024, 51(6): 785-792.
[14] Sixin Jiang,Wenjin Shi,Xiaobo Luo,Qianming Chen. Research progress of the diagnosis and treatment of viral stomatitis in children [J]. Int J Stomatol, 2024, 51(5): 519-531.
[15] Mingyang Jiao,Yucui Zhou,Zhengyuan Jiang,Yuxin Liu,Liu Qu. Research progress on digital template technology in endodontic treatment [J]. Int J Stomatol, 2024, 51(5): 550-557.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[9] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[10] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .