Int J Stomatol ›› 2025, Vol. 52 ›› Issue (2): 169-175.doi: 10.7518/gjkq.2025033

• Materials • Previous Articles     Next Articles

Zirconia ceramics in dental restoration: evaluation and solutions for low-temperature degradation

Bo Huang(),Jian Wang(),Xin Zhang   

  1. State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Dept. of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2024-03-15 Revised:2024-09-18 Online:2025-03-01 Published:2025-03-01
  • Contact: Jian Wang E-mail:huangbo0@stu.scu.edu.cn;fero@scu.edu.cn
  • Supported by:
    Research and Development Program of West China Hospital of Stomatology, Sichuan University(RD-03-202107)

Abstract:

Zirconia ceramics, which have unique phase transformation toughening capabilities, have garnered widespread attention for their excellent mechanical properties, biocompatibility, chemical stability, and optical characteristics. However, their phase transformation toughening ability is a limitation in clinical applications, affecting the potential for long-term use due to low-temperature degradation (LTD). LTD not only severely affects the mechanical properties of the material but also has adverse effects on aesthetics by changing the translucency and color. This article delves into the key factors influencing LTD, including dopant types as well as content, grain size, and residual stress. Moreover, this article reviews strategies for evaluating and mitigating LTD in zirconia ceramics, providing new perspectives for the development of dental zirconia.

Key words: dental restoration, monolithic zirconia crowns, low temperature degradation, aesthetic appeal, yttria, dopant, residual stresses, additive manufacture

CLC Number: 

  • R783.1

TrendMD: 
1 Ribera OK, Mendes JM, Mendes J, et al. Influence of popular beverages on the fracture resistance of implant-supported bis-acrylic resin provisional crow-ns: an in vitro study[J]. Polymers (Basel), 2023, 15(16): 3411.
2 杨光美, 王剑. 全锆冠机械性能的研究现状及与临床应用的关系[J]. 国际口腔医学杂志, 2022, 49(1): 79-84.
Yang GM, Wang J. Mechanical properties of monolithic zirconia crowns and its relationship with clinical application[J]. Int J Stomatol, 2022, 49(1): 79-84.
3 Makhija SK, Lawson NC, Gilbert GH, et al. Dentist material selection for single-unit crowns: findings from the National Dental Practice-Based Research Network[J]. J Dent, 2016, 55: 40-47.
4 Alqutaibi AY, Ghulam O, Krsoum M, et al. Revolution of current dental zirconia: a comprehensive review[J]. Molecules, 2022, 27(5): 1699.
5 Zhang Y, Lawn BR. Novel zirconia materials in dentistry[J]. J Dent Res, 2018, 97(2): 140-147.
6 Benalcázar Jalkh EB, Bergamo ETP, Monteiro KN, et al. Aging resistance of an experimental zirconia-toughened alumina composite for large span dental prostheses: optical and mechanical characterization[J]. J Mech Behav Biomed Mater, 2020, 104: 103659.
7 Ren X, Pan W. Mechanical properties of high-temperature-degraded yttria-stabilized zirconia[J]. Acta Mater, 2014, 69: 397-406.
8 Nistor L, Grădinaru M, Rîcă R, et al. Zirconia use in dentistry-manufacturing and properties[J]. Curr Heal-th Sci J, 2019, 45(1): 28-35.
9 Pandoleon P, Kontonasaki E, Kantiranis N, et al. A-ging of 3Y-TZP dental zirconia and yttrium depletion[J]. Dent Mater, 2017, 33(11): e385-e392.
10 Hajhamid B, Alfrisany N, Somogyi-Ganss E. The effect of accelerated aging on crystalline structures and optical properties of different monolithic zirconia: a qualitative systematic review[J]. Dent Mater, 2022, 38(4): 569-586.
11 de Araújo-Júnior ENS, Bergamo ETP, Campos TMB, et al. Hydrothermal degradation methods affect the properties and phase transformation depth of translucent zirconia[J]. J Mech Behav Biomed Mater, 2020, 112: 104021.
12 Furuya K, Takemoto S, Yamashita S, et al. Low-temperature degradation of high-strength Y-TZP (yttria-stabilized tetragonal zirconia polycrystal) [J]. Dent Mater J, 2020, 39(4): 577-586.
13 Koenig V, Bekaert S, Dupont N, et al. Intraoral low-temperature degradation of monolithic zirconia dental prostheses: results of a prospective clinical study with ex vivo monitoring[J]. Dent Mater, 2021, 37(7): 1134-1149.
14 Miragaya LM, Guimarães RB, Souza ROAE, et al. Effect of intra-oral aging on t→m phase transformation, microstructure, and mechanical properties of Y-TZP dental ceramics[J]. J Mech Behav Biomed Mater, 2017, 72: 14-21.
15 Bergamo E, da Silva WJ, Cesar PF, et al. Fracture load and phase transformation of monolithic zirconia crowns submitted to different aging protocols[J]. Oper Dent, 2016, 41(5): E118-E130.
16 Nakamura K, Harada A, Kanno T, et al. The in-fluence of low-temperature degradation and cyclic loading on the fracture resistance of monolithic zirconia molar crowns[J]. J Mech Behav Biomed Mater, 2015, 47: 49-56.
17 Moon JE, Kim SH, Lee JB, et al. Effects of airborne-particle abrasion protocol choice on the surface characteristics of monolithic zirconia materials and the shear bond strength of resin cement[J]. Ceram Int, 2016, 42(1): 1552-1562.
18 Flinn BD, Raigrodski AJ, Mancl LA, et al. In-fluence of aging on flexural strength of translucent zirconia for monolithic restorations[J]. J Prosthet Dent, 2017, 117(2): 303-309.
19 Hallmann L, Mehl A, Ulmer P, et al. The influence of grain size on low-temperature degradation of dental zirconia[J]. J Biomed Mater Res B Appl Biomater, 2012, 100(2): 447-456.
20 Wille S, Zumstrull P, Kaidas V, et al. Low temperature degradation of single layers of multilayered zirconia in comparison to conventional unshaded zirconia: phase transformation and flexural strength[J]. J Mech Behav Biomed Mater, 2018, 77: 171-175.
21 Liu HY, Inokoshi M, Nozaki K, et al. Influence of high-speed sintering protocols on translucency, mechanical properties, microstructure, crystallography, and low-temperature degradation of highly translucent zirconia[J]. Dent Mater, 2022, 38(2): 451-468.
22 Zhai ZD, Sun J. Research on the low-temperature degradation of dental zirconia ceramics fabricated by stereolithography[J]. J Prosthet Dent, 2023, 130(4): 629-638.
23 Pereira GKR, Venturini AB, Silvestri T, et al. Low-temperature degradation of Y-TZP ceramics: a systematic review and meta-analysis[J]. J Mech Behav Biomed Mater, 2015, 55: 151-163.
24 Cattani-Lorente M, Durual S, Amez-Droz M, et al. Hydrothermal degradation of a 3Y-TZP translucent dental ceramic: a comparison of numerical predictions with experimental data after 2 years of aging[J]. Dent Mater, 2016, 32(3): 394-402.
25 Papageorgiou-Kyrana K, Fasoula M, Kontonasaki E. Translucency of monolithic zirconia after hydrothermal aging: a review of in vitro studies[J]. J Prosthodont, 2020, 29(6): 489-500.
26 Kim HK, Kim SH. Effect of hydrothermal aging on the optical properties of precolored dental monoli-thic zirconia ceramics[J]. J Prosthet Dent, 2019, 121(4): 676-682.
27 Brentel AS, Kantorski KZ, Valandro LF, et al. Confocal laser microscopic analysis of biofilm on newer feldspar ceramic[J]. Oper Dent, 2011, 36(1): 43-51.
28 Badarneh A, Eun Choi JJ, Lyons K, et al. The effect of aging on the wear performance of monolithic zirconia[J]. Dent Mater, 2022, 38(5): e136-e146.
29 Yang H, Xu YL, Hong G, et al. Effects of low-temperature degradation on the surface roughness of yttria-stabilized tetragonal zirconia polycrystal cera-mics: a systematic review and meta-analysis[J]. J Pro-sthet Dent, 2021, 125(2): 222-230.
30 Tang K, Luo ML, Zhou W, et al. The integration of peri-implant soft tissues around zirconia abutments: challenges and strategies[J]. Bioact Mater, 2023, 27: 348-361.
31 Samodurova A, Kocjan A, Swain MV, et al. The combined effect of alumina and silica co-doping on the ageing resistance of 3Y-TZP bioceramics[J]. Acta Biomater, 2015, 11: 477-487.
32 Wertz M, Fuchs F, Hoelzig H, et al. The influence of surface preparation, chewing simulation, and thermal cycling on the phase composition of dental zirconia[J]. Materials, 2021, 14(9): 2133.
33 Aragón-Duarte MC, Nevarez-Rascón A, Esparza-Ponce HE, et al. Nanomechanical properties of zirconia-yttria and alumina zirconia-yttria biomedical ceramics, subjected to low temperature aging[J]. Ceram Int, 2017, 43(5): 3931-3939.
34 Kolakarnprasert N, Kaizer MR, Kim DK, et al. New multi-layered zirconias: composition, microstructure and translucency[J]. Dent Mater, 2019, 35(5): 797-806.
35 Ban S. Chemical durability of high translucent dental zirconia[J]. Dent Mater J, 2020, 39(1): 12-23.
36 Lucas TJ, Lawson NC, Janowski GM, et al. Effect of grain size on the monoclinic transformation, hardness, roughness, and modulus of aged partially stabilized zirconia[J]. Dent Mater, 2015, 31(12): 1487-1492.
37 Lughi V, Sergo V. Low temperature degradation -a-ging- of zirconia: a critical review of the relevant aspects in dentistry[J]. Dent Mater, 2010, 26(8): 807-820.
38 Kim MJ, Ahn JS, Kim JH, et al. Effects of the sinte-ring conditions of dental zirconia ceramics on the grain size and translucency[J]. J Adv Prosthodont, 2013, 5(2): 161-166.
39 Denry I, Kelly JR. Emerging ceramic-based mate-rials for dentistry[J]. J Dent Res, 2014, 93(12): 1235-1242.
40 Sergo V, Clarke DR, Pompe W. Deformation bands in ceria-stabilized tetragonal zirconia/alumina:Ⅰ, measurement of internal stresses[J]. J Am Ceram Soc, 1995, 78(3): 633-640.
41 Camposilvan E, Flamant Q, Anglada M. Surface roughened zirconia: towards hydrothermal stability[J]. J Mech Behav Biomed Mater, 2015, 47: 95-106.
42 Soylemez B, Sener EC, Yurdakul A, et al. Fracture toughness enhancement of yttria-stabilized tetragonal zirconia polycrystalline ceramics through magnesia-partially stabilized zirconia addition[J]. J Sci Adv Mater Devices, 2020, 5(4): 527-534.
43 Yusuf D, Maryani E, Mardhian DF, et al. Evaluation of structural stability, mechanical properties, and cor-rosion resistance of magnesia partially stabilized zirconia (Mg-PSZ)[J]. Molecules, 2023, 28(16): 6054.
44 Rauchs G, Fett T, Munz D, et al. Tetragonal-to-monoclinic phase transformation in CeO2-stabilised zirconia under uniaxial loading[J]. J Eur Ceram Soc, 2001, 21(12): 2229-2241.
45 Ban S. Classification and properties of dental zirconia as implant fixtures and superstructures[J]. Materials, 2021, 14(17): 4879.
46 Wang W, Sun J. Dimensional accuracy and clinical adaptation of ceramic crowns fabricated with the stereolithography technique[J]. J Prosthet Dent, 2021, 125(4): 657-663.
47 Miura S, Shinya A, Ishida Y, et al. The effect of low-temperature degradation and building directions on the mechanical properties of additive-manufactured zirconia[J]. Dent Mater J, 2023, 42(6): 800-805.
48 Revilla-León M, Al-Haj Husain N, Ceballos L, et al. Flexural strength and Weibull characteristics of stereolithography additive manufactured versus milled zirconia[J]. J Prosthet Dent, 2021, 125(4): 685-690.
[1] Zeng Fang,Wang Jian. Influencing factors of aesthetic prosthesis performance of monolithic zirconia crowns [J]. Int J Stomatol, 2022, 49(2): 233-238.
[2] Yang Guangmei,Wang Jian. Mechanical properties of monolithic zirconia crowns and its relationship with clinical application [J]. Int J Stomatol, 2022, 49(1): 79-84.
[3] Chen Hui, Cheng Lei.. Research progress on anti-caries dental adhesives [J]. Inter J Stomatol, 2017, 44(1): 92-97.
[4] Xiao Ling, Chao Yonglie.
Essential factors affecting porcelain chipping -off in veneered zirconia restorations
[J]. Inter J Stomatol, 2013, 40(2): 195-198.
[5] Hao Zhichao1, Meng Yukun2.. Low temperature degradation of dental zirconia ceramic and its influencing factors [J]. Inter J Stomatol, 2012, 39(4): 494-497.
[6] Li Yaya, Liu Li. . The classification and application of dentinal desensitizers in dental restoration [J]. Inter J Stomatol, 2011, 38(4): 481-484.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[9] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[10] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .