Int J Stomatol ›› 2024, Vol. 51 ›› Issue (2): 201-207.doi: 10.7518/gjkq.2024031

• Reviews • Previous Articles     Next Articles

Research progress of primary cilia in bone remodelling and reconstruction of temporomandibular joint cartilage under mechanical stress

Qing Xue(),Huichuan Qi,Min Hu()   

  1. Dept. of Orthodontics, Hospital of Stomatology, Jilin University, Changchun 130021, ChinaCorrespordence: Hu Min, Email: humin@jlu. edu. cn
  • Received:2023-06-27 Revised:2023-11-10 Online:2024-03-01 Published:2024-03-11
  • Contact: Min Hu E-mail:xueqing21@mails.jlu.edu.cn;humin@jlu.edu.cn
  • Supported by:
    National Natural Science Foundation of China Youth Science Foundation Project(82100956)

Abstract:

Tooth movement and temporomandibular joint remodelling during orthodontic treatment are typical biomechanical processes that involve bone remodelling and maintenance of cartilage homeostasis. Primary cilia are mechanoreceptors that widely exist on the surface of mesenchymal stem cells (MSCs), osteoblasts, osteocytes, chondrocytes, and other cells. Under mechanical stress, primary cilia could promote the osteogenic differentiation of MSCs and maintain the mechani-cal sensitivity of osteoblasts. Primary cilia could also promote the deposition of the bone matrix, upregulate the functional activity of osteocytes, and indirectly regulate the activity of osteoclasts. They promote the proliferation, differentiation, and endochondral ossification of chondrocytes by transducing multiple signalling pathways and thus play an important role in bone-cartilage tissue remodelling. This article aims to review the research progress of primary cilia in alveolar bone remodelling and reconstruction of temporomandibular joint cartilage. Relevant molecular mechanisms are discussed. This work provides a reference to further explore the mechanisms of bone and cartilage tissue remodelling during orthodontic treatment.

Key words: primary cilia, mechanotransduction, orthodontic tooth movement, temporomandibular joint

CLC Number: 

  • R783.5

TrendMD: 
1 Deng LZ, Chen YL, Guo JS, et al. Roles and mechanisms of YAP/TAZ in orthodontic tooth movement[J]. J Cell Physiol, 2021, 236(11): 7792-7800.
2 Qin L, Liu W, Cao HL, et al. Molecular mechanosensors in osteocytes[J]. Bone Res, 2020, 8: 23.
3 Teves ME, Strauss JF 3rd, Sapao P, et al. The primary cilium: emerging role as a key player in fibrosis[J]. Curr Rheumatol Rep, 2019, 21(6): 29.
4 Chinipardaz Z, Liu M, Graves DT, et al. Role of primary cilia in bone and cartilage[J]. J Dent Res, 2022, 101(3): 253-260.
5 Anvarian Z, Mykytyn K, Mukhopadhyay S, et al. Cellular signalling by primary cilia in development, organ function and disease[J]. Nat Rev Nephrol, 2019, 15(4): 199-219.
6 Nakayama K, Katoh Y. Architecture of the IFT ciliary trafficking machinery and interplay between its components[J]. Crit Rev Biochem Mol Biol, 2020, 55(2): 179-196.
7 Bangs F, Anderson KV. Primary cilia and mammalian hedgehog signaling[J]. Cold Spring Harb Perspect Biol, 2017, 9(5): a028175.
8 Yang N, Li L, Eguether T, Sundberg JP, et al. Intraflagellar transport 27 is essential for hedgehog signaling but dispensable for ciliogenesis during hair follicle morphogenesis[J]. Development, 2015, 142(12): 2194-2202.
9 Clement CA, Ajbro KD, Koefoed K, et al. TGF-β signaling is associated with endocytosis at the po-cket region of the primary cilium[J]. Cell Rep, 2013, 3(6): 1806-1814.
10 Lee KH. Involvement of Wnt signaling in primary cilia assembly and disassembly[J]. FEBS J, 2020, 287(23): 5027-5038.
11 Reiter JF, Leroux MR. Genes and molecular pathways underpinning ciliopathies[J]. Nat Rev Mol Cell Biol, 2017, 18(9): 533-547.
12 Horani A, Ferkol TW. Understanding primary cilia-ry dyskinesia and other ciliopathies[J]. J Pediatr, 2021, 230: 15-22.e1.
13 Kaku M, Komatsu Y. Functional diversity of ciliary proteins in bone development and disease[J]. Curr Osteoporos Rep, 2017, 15(2): 96-102.
14 Tao DK, Xue H, Zhang CY, et al. The role of IFT140 in osteogenesis of adult mice long bone[J]. J Histochem Cytochem, 2019, 67(8): 601-611.
15 Kinumatsu T, Shibukawa Y, Yasuda T, et al. TMJ development and growth require primary cilia function[J]. J Dent Res, 2011, 90(8): 988-994.
16 Li Y, Zhan Q, Bao MY, et al. Biomechanical and bio-logical responses of periodontium in orthodontic tooth movement: up-date in a new decade[J]. Int J Oral Sci, 2021, 13(1): 20.
17 Labour MN, Riffault M, Christensen ST, et al. TGFβ1-induced recruitment of human bone mesenchymal stem cells is mediated by the primary cilium in a SMAD3-dependent manner[J]. Sci Rep, 2016, 6: 35542.
18 Lee MN, Song JH, Oh SH, et al. The primary cilium directs osteopontin-induced migration of mesenchymal stem cells by regulating CD44 signaling and Cdc-42 activation[J]. Stem Cell Res, 2020, 45: 101799.
19 Hoey DA, Tormey S, Ramcharan S, et al. Primary cilia-mediated mechanotransduction in human mesenchymal stem cells[J]. Stem Cells, 2012, 30(11): 2561-2570.
20 Corrigan MA, Ferradaes TM, Riffault M, et al. Ci-liotherapy treatments to enhance biochemically- and biophysically-induced mesenchymal stem cell osteogenesis: a comparison study[J]. Cell Mol Bioeng, 2019, 12(1): 53-67.
21 Johnson GP, Stavenschi E, Eichholz KF, et al. Mesenchymal stem cell mechanotransduction is cAMP dependent and regulated by adenylyl cyclase 6 and the primary cilium[J]. J Cell Sci, 2018, 131(21): jcs222737.
22 Corrigan MA, Johnson GP, Stavenschi E, et al. TRPV4-mediates oscillatory fluid shear mechanotransduction in mesenchymal stem cells in part via the primary cilium[J]. Sci Rep, 2018, 8(1): 3824.
23 Jin SS, He DQ, Wang Y, et al. Mechanical force modulates periodontal ligament stem cell charac-teristics during bone remodelling via TRPV4[J]. Cell Prolif, 2020, 53(10): e12912.
24 Monnouchi S, Maeda H, Yuda A, et al. Mechanical induction of interleukin-11 regulates osteoblastic/cementoblastic differentiation of human periodontal ligament stem/progenitor cells[J]. J Periodontal Res, 2015, 50(2): 231-239.
25 Yuan X, Serra RA, Yang SY. Function and regulation of primary cilia and intraflagellar transport proteins in the skeleton[J]. Ann N Y Acad Sci, 2015, 1335(1): 78-99.
26 Li YH, Zhu D, Yang TY, et al. Crosstalk between the COX2-PGE2-EP4 signaling pathway and primary cilia in osteoblasts after mechanical stimulation[J]. J Cell Physiol, 2021, 236(6): 4764-4777.
27 Ehnert S, Sreekumar V, Aspera-Werz RH, et al. TGF-β1 impairs mechanosensation of human osteoblasts via HDAC6-mediated shortening and distortion of primary cilia[J]. J Mol Med (Berl), 2017, 95(6): 653-663.
28 Li YH, Zhu D, Cao ZB, et al. Primary cilia respond to intermittent low-magnitude, high-frequency vibration and mediate vibration-induced effects in osteoblasts[J]. Am J Physiol Cell Physiol, 2020, 318(1): C73-C82.
29 Lim J, Li XH, Yuan X, et al. Primary cilia control cell alignment and patterning in bone development via ceramide-PKCζ-β-catenin signaling[J]. Commun Biol, 2020, 3(1): 45.
30 Uda Y, Azab E, Sun NY, et al. Osteocyte mechanobiology[J]. Curr Osteoporos Rep, 2017, 15(4): 318-325.
31 Spasic M, Duffy MP, Jacobs CR. Fenoldopam sensitizes primary cilia-mediated mechanosensing to prom-ote osteogenic intercellular signaling and whole bone adaptation[J]. J Bone Miner Res, 2022, 37(5): 972-982.
32 Duffy MP, Sup ME, Guo XE. Adenylyl cyclase 3 regulates osteocyte mechanotransduction and primary cilium[J]. Biochem Biophys Res Commun, 2021, 573: 145-150.
33 Martín-Guerrero E, Tirado-Cabrera I, Buendía I, et al. Primary cilia mediate parathyroid hormone receptor type 1 osteogenic actions in osteocytes and osteoblasts via Gli activation[J]. J Cell Physiol, 2020, 235(10): 7356-7369.
34 Tirado-Cabrera I, Martin-Guerrero E, Heredero-Jimenez S, et al. PTH1R translocation to primary cilia in mechanically-stimulated ostecytes prevents osteoclast formation via regulation of CXCL5 and IL-6 secretion[J]. J Cell Physiol, 2022, 237(10): 3927-3943.
35 Ding D, Yang X, Luan HQ, et al. Pharmacological regulation of primary cilium formation affects the mechanosensitivity of osteocytes[J]. Calcif Tissue Int, 2020, 107(6): 625-635.
36 Kim JM, Lin CJ, Stavre Z, et al. Osteoblast-osteoclast communication and bone homeostasis[J]. Cells, 2020, 9(9): 2073.
37 Ono T, Nakashima T. Recent advances in osteoclast biology[J]. Histochem Cell Biol, 2018, 149(4): 325-341.
38 Shalish M, Will LA, Fukai, et al. Role of polycystin-1 in bone remodeling: orthodontic tooth movement study in mutant mice[J]. Angle Orthod, 2014, 84(5): 885-890.
39 Sánchez I, Dynlacht BD. Cilium assembly and disassembly[J]. Nat Cell Biol, 2016, 18(7): 711-717.
40 蒋思琪, 尹凤英, 张璠, 等. 初级纤毛对人牙周膜细胞成骨相关基因表达的影响[J]. 口腔医学研究, 2018, 34(1): 10-13.
Jiang SQ, Yin FY, Zhang F, et al. Effect of primary cilia on expression of osteogenic-related genes of human periodontal ligament cells[J]. J Oral Sci Res, 2018, 34(1): 10-13.
41 Chang PE, Li SJ, Kim HY, et al. BBS7-SHH signaling activity regulates primary cilia for periodontal homeostasis[J]. Front Cell Dev Biol, 2021, 9: 796274.
42 Tao FH, Jiang T, Tao H, et al. Primary cilia: versatile regulator in cartilage development[J]. Cell Prolif, 2020, 53(3): e12765.
43 Fu S, Meng H, Inamdar S, et al. Activation of TRPV4 by mechanical, osmotic or pharmaceutical stimulation is anti-inflammatory blocking IL-1β mediated articular cartilage matrix destruction[J]. Osteoarthritis Cartilage, 2021, 29(1): 89-99.
44 Kitami M, Yamaguchi H, Ebina M, et al. IFT20 is required for the maintenance of cartilaginous matrix in condylar cartilage[J]. Biochem Biophys Res Commun, 2019, 509(1): 222-226.
45 Salinas EY, Aryaei A, Paschos N, et al. Shear stress induced by fluid flow produces improvements in ti-ssue-engineered cartilage[J]. Biofabrication, 2020, 12(4): 045010.
46 Zhang ZY, Sa GL, Wang Z, et al. Piezo1 and IFT88 synergistically regulate mandibular condylar chondrocyte differentiation under cyclic tensile strain[J]. Tissue Cell, 2022, 76: 101781.
47 Zhang J, Zhang HY, Zhang M, et al. Connexin43 hemichannels mediate small molecule exchange between chondrocytes and matrix in biomechanically-stimulated temporomandibular joint cartilage[J]. Osteoarthritis Cartilage, 2014, 22(6): 822-830.
48 Thompson CL, Chapple JP, Knight MM. Primary cilia disassembly down-regulates mechanosensitive hedgehog signalling: a feedback mechanism controlling ADAMTS-5 expression in chondrocytes[J]. Osteoarthritis Cartilage, 2014, 22(3): 490-498.
49 He Z, Leong DJ, Zhuo Z, et al. Strain-induced mechanotransduction through primary cilia, extracellular ATP, purinergic calcium signaling, and ERK1/2 transactivates CITED2 and downregulates MMP-1 and MMP-13 gene expression in chondrocytes[J]. Osteoarthritis Cartilage, 2016, 24(5): 892-901.
50 Coveney CR, Samvelyan HJ, Miotla-Zarebska J, et al. Ciliary IFT88 protects coordinated adolescent growth plate ossification from disruptive physiological mechanical forces[J]. J Bone Miner Res, 2022, 37(6): 1081-1096.
51 Barsch F, Niedermair T, Mamilos A, et al. Physiological and pathophysiological aspects of primary cilia-a literature review with view on functional and structural relationships in cartilage[J]. Int J Mol Sci, 2020, 21(14): 4959.
52 Estell EG, Murphy LA, Silverstein AM, et al. Fibroblast-like synoviocyte mechanosensitivity to fluid shear is modulated by interleukin-1α[J]. J Biomech, 2017, 60: 91-99.
53 Fu S, Thompson CL, Ali A, et al. Mechanical loa-ding inhibits cartilage inflammatory signalling via an HDAC6 and IFT-dependent mechanism regulating primary cilia elongation[J]. Osteoarthritis Cartilage, 2019, 27(7): 1064-1074.
[1] Han Jingwen,Ren Shiqi,Liu Xingyu,Lang Xin,Chu Mengshi,Waseem Saleh Abdo Kaid Algumaei,Zheng Yan. Features of condyles of adult patients with different vertical and sagittal skeletal facial types [J]. Int J Stomatol, 2022, 49(2): 153-162.
[2] Zhang Zhe,Liu Jin,Wang Weihong,Chen Zhiqiang,Yang Chun,Liu Li. Calcium pyrophosphate deposition disease complicated by temporomandibular joint dislocation [J]. Int J Stomatol, 2021, 48(6): 664-667.
[3] Yin Yuanyuan,Ma Huayu,Li Xinyi,Xu Jingchen,Liu Ting,Chen Song,He Shushu. Expression of autophagy related genes in mice periodontal tissue during orthodontic tooth movement [J]. Int J Stomatol, 2020, 47(6): 627-634.
[4] Li Jingya,Shui Yusen,Guo Yongwen. Advances in mechanisms for osteogenic differentiation of human periodontal ligament cells induced by cyclic tensile stress [J]. Int J Stomatol, 2020, 47(6): 652-660.
[5] Yin Xiaoli,Liu Yang,Wang Jun. Internal structural changes of the temporomandibular joint associated with mandibular lateral displacement [J]. Int J Stomatol, 2020, 47(5): 567-573.
[6] Zhao Yujie,Guan Xiaoyan,Li Xiaolan,Chen Qijun,Wang Qian,Liu Jianguo. Research progress on macrophage polarization involved in the regulation of orthodontic tooth movement [J]. Int J Stomatol, 2020, 47(4): 478-483.
[7] Lin Yangyang,Hou Min. Effect of bilateral sagittal split ramus osteotomy operation on the displacement of proximal segment of mandible [J]. Int J Stomatol, 2019, 46(6): 718-723.
[8] Ya Yang,Peng Chen,Hongwei Dai,Lin Zhang. Change in expression of transformation growth factor-β/Smad signalling pathway-related proteins in epithelial rests of Malassez during orthodontic tooth movement in rats [J]. Int J Stomatol, 2019, 46(3): 270-276.
[9] Jun Guo,Wei Fei,Qinghua Li. Animal research for the prognostic mechanism of traumatic temporomandibular joint ankyloses [J]. Inter J Stomatol, 2019, 46(1): 12-19.
[10] Li Jing, Liu Xingchen, Li Jiayuan, Li Xiaobing. Stabilization splint treatment for chronic temporomandibular joint disk displacement without reduction: a systematic review based on randomized controlled trials [J]. Inter J Stomatol, 2017, 44(4): 405-410.
[11] Liu Yang, Zhao Hanchi. Rehabilitation of worn dentition complicated by clicking joint [J]. Inter J Stomatol, 2017, 44(1): 11-18.
[12] Hu Xinxin, Zhu Yaomin, Zheng Cangshang. Research progress on idiopathic condylar resorption [J]. Inter J Stomatol, 2016, 43(4): 412-416.
[13] Qiu Jingyi, Wan Lingyun, Zhao Zhihe, Li Juan. Regulation of external and internal forces on the chondrogenic differentiation of mesenchymal stem cells [J]. Inter J Stomatol, 2016, 43(4): 449-455.
[14] Lü Chunxiao, Chen Song. Correlation between clinical diagnosis and magnetic resonance imaging findings of temporomandibular joint disorder [J]. Inter J Stomatol, 2016, 43(1): 47-.
[15] Yang Wenying1, Zhang Wenli1, Luo Yingwei2. . Research progress on the animal model of temporomandibular joint osteoarthritis [J]. Inter J Stomatol, 2015, 42(6): 677-680.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[9] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[10] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .