Int J Stomatol ›› 2020, Vol. 47 ›› Issue (3): 249-256.doi: 10.7518/gjkq.2020055

• Expert Forum •     Next Articles

The definition of skeletal stem cell in bone development

Shi Yu()   

  1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China School of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2020-02-06 Revised:2020-02-19 Online:2020-05-01 Published:2020-05-08
  • Contact: Yu Shi E-mail:intobiooo@163.com
  • Supported by:
    The Fundamental Research Funds for the Central Universities(20822041D4014);Scientific Research Foundation for Recruited Talents, West China Hospital of Stomatology, Sichuan University(QDJF2019-2)

Abstract:

Growing evidence supports the idea that skeletal stem cells play important roles in bone development. Over the recent years, the identification of skeletal stem cells has evolved from cells simply defined by in vitro behaviors to cells identified by a combination of ex vivo serial transplantation assays and in vitro lineage-tracing experiments. These approaches have shown better identification of the characteristics of skeletal stem cells residing in multiple tissues, including the perichondrium of the fetal bone, the resting zone of the postnatal growth plate and the adult bone marrow space. Multiple groups of skeletal stem cells seem to collaborate tightly and achieve critical biological functions of mineralized tissue, including not only bone development and growth, but also maintenance and repair. Although recently more studies have been focusing on this topic and collecting numbers of important findings, we are still beginning to understand the diversity and the nature of skeletal stem cells, and how they actually behave in vivo. Accumulating works need to be done to investigate the feature and systemic regulation of skeletal stem cells.

Key words: skeletal stem cell, identification, bone development

CLC Number: 

  • Q254

TrendMD: 
[1] Long FX . Building strong bones: molecular regula-tion of the osteoblast lineage[J]. Nat Rev Mol Cell Biol, 2011,13(1):27-38.
doi: 10.1038/nrm3254 pmid: 22189423
[2] Olsen BR, Reginato AM, Wang W . Bone develop-ment[J]. Annu Rev Cell Dev Biol, 2000,16:191-220.
doi: 10.1146/annurev.cellbio.16.1.191 pmid: 11031235
[3] Bianco P . “Mesenchymal” stem cells[J]. Annu Rev Cell Dev Biol, 2014,30:677-704.
doi: 10.1146/annurev-cellbio-100913-013132 pmid: 25150008
[4] Friedenstein AJ, Piatetzky-Shapiro II, Petrakova KV . Osteogenesis in transplants of bone marrow cells[J]. J Embryol Exp Morphol, 1966,16(3):381-390.
pmid: 5336210
[5] Castro-Malaspina H, Gay RE, Resnick G , et al. Characterization of human bone marrow fibroblast colony-forming cells (CFU-F) and their progeny[J]. Blood, 1980,56(2):289-301.
pmid: 6994839
[6] Sacchetti B, Funari A, Michienzi S , et al. Self-renewing osteoprogenitors in bone marrow sinusoids can or-ganize a hematopoietic microenvironment[J]. Cell, 2007,131(2):324-336.
doi: 10.1016/j.cell.2007.08.025 pmid: 17956733
[7] Bianco P, Cao X, Frenette PS , et al. The meaning, the sense and the significance: translating the science of mesenchymal stem cells into medicine[J]. Nat Med, 2013,19(1):35-42.
doi: 10.1038/nm.3028 pmid: 23296015
[8] Thomson TM, Rettig WJ, Chesa PG , et al. Expression of human nerve growth factor receptor on cells de-rived from all three germ layers[J]. Exp Cell Res, 1988,174(2):533-539.
doi: 10.1016/0014-4827(88)90323-0 pmid: 2828087
[9] Cattoretti G, Schiró R, Orazi A , et al. Bone marrow stroma in humans: anti-nerve growth factor receptor antibodies selectively stain reticular cells in vivo and in vitro[J]. Blood, 1993,81(7):1726-1738.
pmid: 7681701
[10] Jones EA, English A, Kinsey SE , et al. Optimization of a flow cytometry-based protocol for detection and phenotypic characterization of multipotent mesen-chymal stromal cells from human bone marrow[J]. Cytometry B Clin Cytom, 2006,70(6):391-399.
doi: 10.1002/cyto.b.20118 pmid: 16977637
[11] Jones E, English A, Churchman SM , et al. Large-scale extraction and characterization of CD271+ multipotential stromal cells from trabecular bone in health and osteoarthritis: implications for bone re-generation strategies based on uncultured or mini-mally cultured multipotential stromal cells[J]. Ar-thritis Rheum, 2010,62(7):1944-1954.
[12] Quirici N, Soligo D, Bossolasco P , et al. Isolation of bone marrow mesenchymal stem cells by anti-nerve growth factor receptor antibodies[J]. Exp Hematol, 2002,30(7):783-791.
doi: 10.1016/s0301-472x(02)00812-3 pmid: 12135677
[13] Shi ST, Gronthos S . Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp[J]. J Bone Miner Res, 2003,18(4):696-704.
doi: 10.1359/jbmr.2003.18.4.696 pmid: 12674330
[14] Kunisaki Y, Bruns I, Scheiermann C , et al. Arteriolar niches maintain haematopoietic stem cell quiescence[J]. Nature, 2013,502(7473):637-643.
doi: 10.1038/nature12612 pmid: 24107994
[15] Morikawa S, Mabuchi Y, Kubota Y , et al. Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow[J]. J Exp Med, 2009,206(11):2483-2496.
doi: 10.1084/jem.20091046 pmid: 19841085
[16] Tormin A, Li O, Brune JC , et al. CD146 expression on primary nonhematopoietic bone marrow stem cells is correlated with in situ localization[J]. Blood, 2011,117(19):5067-5077.
doi: 10.1182/blood-2010-08-304287 pmid: 21415267
[17] Mabuchi Y, Morikawa S, Harada S , et al. LNGFR+- THY-1+VCAM-1hi+ cells reveal functionally distinct subpopulations in mesenchymal stem cells[J]. Stem Cell Reports, 2013,1(2):152-165.
doi: 10.1016/j.stemcr.2013.06.001 pmid: 24052950
[18] Wang Y, Chen XD, Cao W , et al. Plasticity of mesen-chymal stem cells in immunomodulation: patholo-gical and therapeutic implications[J]. Nat Immunol, 2014,15(11):1009-1016.
doi: 10.1038/ni.3002 pmid: 25329189
[19] Chan CK, Seo EY, Chen JY , et al. Identification and specification of the mouse skeletal stem cell[J]. Cell, 2015,160(1/2):285-298.
[20] Chan CKF, Gulati GS, Sinha R , et al. Identification of the human skeletal stem cell[J]. Cell, 2018, 175 (1): 43-56.e21.
doi: 10.1016/j.cell.2018.07.029 pmid: 30241615
[21] Mignone JL, Kukekov V, Chiang AS , et al. Neural stem and progenitor cells in nestin-GFP transgenic mice[J]. J Comp Neurol, 2004,469(3):311-324.
doi: 10.1002/cne.10964 pmid: 14730584
[22] Méndez-Ferrer S, Michurina TV, Ferraro F , et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche[J]. Nature, 2010,466(7308):829-834.
doi: 10.1038/nature09262 pmid: 20703299
[23] Pinho S, Lacombe J, Hanoun M , et al. PDGFRα and CD51 mark human nestin+ sphere-forming mesen-chymal stem cells capable of hematopoietic progenitor cell expansion[J]. J Exp Med, 2013,210(7):1351-1367.
doi: 10.1084/jem.20122252 pmid: 23776077
[24] Nagasawa T, Hirota S, Tachibana K , et al. Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1[J]. Nature, 1996,382(6592):635-638.
doi: 10.1038/382635a0 pmid: 8757135
[25] Sugiyama T, Kohara H, Noda M , et al. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches[J]. Immunity, 2006,25(6):977-988.
doi: 10.1016/j.immuni.2006.10.016 pmid: 17174120
[26] Zou YR, Kottmann AH, Kuroda M , et al. Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development[J]. Nature, 1998,393(6685):595-599.
doi: 10.1038/31269 pmid: 9634238
[27] Omatsu Y, Sugiyama T, Kohara H , et al. The essential functions of adipo-osteogenic progenitors as the he-matopoietic stem and progenitor cell niche[J]. Im-munity, 2010,33(3):387-399.
[28] Logan M, Martin JF, Nagy A , et al. Expression of Cre recombinase in the developing mouse limb bud driven by a Prxl enhancer[J]. Genesis, 2002,33(2):77-80.
doi: 10.1002/gene.10092 pmid: 12112875
[29] Akiyama H, Kim JE, Nakashima K , et al. Osteo-chondroprogenitor cells are derived from Sox9 ex-pressing precursors[J]. Proc Natl Acad Sci U S A, 2005,102(41):14665-14670.
doi: 10.1073/pnas.0504750102 pmid: 16203988
[30] Shi Y, He GX, Lee WC , et al. Gli1 identifies osteo-genic progenitors for bone formation and fracture repair[J]. Nat Commun, 2017,8(1):2043.
doi: 10.1038/s41467-017-02171-2 pmid: 29230039
[31] Isern J, García-García A, Martín AM , et al. The neural crest is a source of mesenchymal stem cells with specialized hematopoietic stem cell niche func-tion[J]. eLife, 2014,3:e03696.
doi: 10.7554/eLife.03696 pmid: 25255216
[32] Mizoguchi T, Pinho S, Ahmed J , et al. Osterix marks distinct waves of primitive and definitive stromal progenitors during bone marrow development[J]. Dev Cell, 2014,29(3):340-349.
doi: 10.1016/j.devcel.2014.03.013 pmid: 24823377
[33] Hsu DR, Economides AN, Wang X , et al. The Xeno-pus dorsalizing factor Gremlin identifies a novel family of secreted proteins that antagonize BMP activities[J]. Mol Cell, 1998,1(5):673-683.
doi: 10.1016/s1097-2765(00)80067-2 pmid: 9660951
[34] Worthley DL, Churchill M, Compton JT , et al. Gre-mlin 1 identifies a skeletal stem cell with bone, carti-lage, and reticular stromal potential[J]. Cell, 2015,160(1/2):269-284.
doi: 10.1016/j.cell.2014.11.042 pmid: 25594183
[35] Ono N, Ono W, Nagasawa T , et al. A subset of chon-drogenic cells provides early mesenchymal pro-genitors in growing bones[J]. Nat Cell Biol, 2014,16(12):1157-1167.
doi: 10.1038/ncb3067 pmid: 25419849
[36] Zhou BO, Yue R, Murphy MM , et al. Leptin-re-ceptor-expressing mesenchymal stromal cells re-present the main source of bone formed by adult bone marrow[J]. Cell Stem Cell, 2014,15(2):154-168.
doi: 10.1016/j.stem.2014.06.008 pmid: 24953181
[37] Park D, Spencer JA, Koh BI , et al. Endogenous bone marrow MSCs are dynamic, fate-restricted par-ticipants in bone maintenance and regeneration[J]. Cell Stem Cell, 2012,10(3):259-272.
doi: 10.1016/j.stem.2012.02.003 pmid: 22385654
[38] Duchamp de Lageneste O, Julien A, Abou-Khalil R , et al. Periosteum contains skeletal stem cells with high bone regenerative potential controlled by perio-stin[J]. Nat Commun, 2018,9(1):773.
doi: 10.1038/s41467-018-03124-z pmid: 29472541
[39] Matthews BG, Grcevic D, Wang LP , et al. Analysis of αSMA-labeled progenitor cell commitment identi-fies notch signaling as an important pathway in fra-cture healing[J]. J Bone Miner Res, 2014,29(5):1283-1294.
doi: 10.1002/jbmr.2140 pmid: 24190076
[40] Wilk K, Yeh SA, Mortensen LJ , et al. Postnatal calvarial skeletal stem cells expressing PRX1 reside exclusively in the calvarial sutures and are required for bone regeneration[J]. Stem Cell Reports, 2017,8(4):933-946.
doi: 10.1016/j.stemcr.2017.03.002 pmid: 28366454
[41] Zhao H, Feng JF, Ho TV , et al. The suture provides a niche for mesenchymal stem cells of craniofacial bones[J]. Nat Cell Biol, 2015,17(4):386-396.
doi: 10.1038/ncb3139 pmid: 25799059
[42] Debnath S, Yallowitz AR, McCormick J , et al. Dis-covery of a periosteal stem cell mediating intramem-branous bone formation[J]. Nature, 2018,562(7725):133-139.
doi: 10.1038/s41586-018-0554-8 pmid: 30250253
[43] Abad V, Meyers JL, Weise M , et al. The role of the resting zone in growth plate chondrogenesis[J]. Endocrinology, 2002,143(5):1851-1857.
doi: 10.1210/endo.143.5.8776 pmid: 11956168
[44] Mizuhashi K, Ono W, Matsushita Y , et al. Resting zone of the growth plate houses a unique class of skeletal stem cells[J]. Nature, 2018,563(7730):254-258.
doi: 10.1038/s41586-018-0662-5 pmid: 30401834
[1] Deng Shiyong,Gong Ping,Tan Zhen. Effects of brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein 1 gene on the regulation of oral and systemic bone metabolism [J]. Int J Stomatol, 2021, 48(2): 198-204.
[2] Qian Haoliang, Li Sheng, Jiang Hongbing. Cleidocranial dysplasia and dentofacial characterization [J]. Inter J Stomatol, 2018, 45(1): 64-67.
[3] Li Bing1, Wu Xiuping1, Han Jianning2, Pan Fei1, Wang Yujin3. Forensic identification through digital imaging of the palatal rugae [J]. Inter J Stomatol, 2017, 44(2): 170-174.
[4] Fan Zhihua, Sun Zhipeng, Dong Qing, Sun Lisha. Coordinated development of osteoblasts by the hedgehog and wingless-type mouse mammary tumor virus integration site family signaling pathways [J]. Inter J Stomatol, 2015, 42(2): 206-209.
[5] Tan Dan1, Zhu Lili1, Zeng Xin1, Chen Qianming1, Wang Zhi2. The histological differential of stroma cells in the tumor microenvironment [J]. Inter J Stomatol, 2013, 40(3): 368-370.
[6] XIE Hui -xu, WANG Ping, LIU Min-chuan. Application of multilocus sequence typing method on infectious diseases [J]. Inter J Stomatol, 2009, 36(5): 557-560.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 458 -460 .
[8] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 452 -454 .
[9] . [J]. Inter J Stomatol, 2008, 35(S1): .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .