Int J Stomatol ›› 2019, Vol. 46 ›› Issue (6): 687-692.doi: 10.7518/gjkq.2019080

• Reviews • Previous Articles     Next Articles

Role of atomic force microscopy in research on microbial adhesion force

Wang Rui,Gai Kuo,Liu Mengqi,Jiang Li()   

  1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of General Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2019-03-21 Revised:2019-07-17 Online:2019-11-01 Published:2019-11-14
  • Contact: Li Jiang E-mail:echojiang999@sina.com
  • Supported by:
    The study was supported by Sichuan Science and Technology Program(2016FZ0069)

Abstract:

As a powerful tool for surface imaging and mechanical detection, atomic force microscopy (AFM) plays an important role in the exploration of microbial morphology and mechanics because of its advantages of nanometre resolution, piconewton force sensitivity and liquid imaging. This paper outlines the latest advances in various imaging modes and force spectroscopies and the cooperation of these technologies based on AFM. It also introduces the applications of AFM in the study of adhesive mechanical properties between bacteria and substrates, bacteria and bacteria, bacteria and bacteria biofilms, thereby providing a new way to research bacteria adhesion mechanics.

Key words: atomic force microscopy, bacterial adhesion, interaction force

CLC Number: 

  • R37

TrendMD: 

Fig 1

Examples of multiparametric imaging and molecular recognition imaging based on atomic force microscopy[34]"

[1] Zhang S, Aslan H, Besenbacher F , et al. Quantitative biomolecular imaging by dynamic nanomechanical mapping[J]. Chem Soc Rev, 2014,43(21):7412-7429.
[2] Garcia R, Herruzo ET . The emergence of multifre-quency force microscopy[J]. Nat Nanotechnol, 2012,7(4):217-226.
[3] Fantner GE, Barbero RJ, Gray DS , et al. Kinetics of antimicrobial peptide activity measured on individual bacterial cells using high-speed atomic force micros-copy[J]. Nat Nanotechnol, 2010,5(4):280-285.
[4] Benning FMC, Sakiyama Y, Mazur A , et al. High-speed atomic force microscopy visualization of the dynamics of the multienzyme fatty acid synthase[J]. ACS Nano, 2017,11(11):10852-10859.
[5] Abu-Lail NI, Camesano TA . Specific and nonspecific interaction forces between Escherichia coli and silicon nitride, determined by poisson statistical analysis[J]. Langmuir, 22(17):7296-7301.
[6] Eskhan AO, Abu-Lail NI . A new approach to de-coupling of bacterial adhesion energies measured by AFM into specific and nonspecific components[J]. Colloid Polym Sci, 2014,292(2):343-353.
[7] El-Kirat-Chatel S, Puymege A, Duong TH , et al. Phenotypic heterogeneity in attachment of marine bacteria toward antifouling copolymers unraveled by AFM[J]. Front Microbiol, 2017,8:1399.
[8] Rosenthal K, Oehling V, Dusny C , et al. Beyond the bulk: disclosing the life of single microbial cells[J]. FEMS Microbiol Rev, 2017,41(6):751-780.
[9] Beaussart A, El-Kirat-Chatel S, Herman P, et al. Sin-gle-cell force spectroscopy of probiotic bacteria[J]. Biophys J, 2013,104(9):1886-1892.
[10] El-Kirat-Chatel S, Beaussart A . Probing bacterial adhesion at the single-molecule and single-cell levels by AFM-based force spectroscopy[J]. Methods Mol Biol, 2018,1814:403-414.
[11] De Keersmaecker H, Frederickx W, Fujita Y , et al. Correlative atomic force and single-molecule fluore-scence microscopy of nucleoprotein complexes[J]. Methods Mol Biol, 2018,1814:339-359.
[12] Dufrêne YF, Martínez-Martín D, Medalsy I , et al. Multiparametric imaging of biological systems by force-distance curve-based AFM[J]. Nat Methods, 2013,10(9):847-854.
[13] Koehler M, Macher G, Rupprecht A , et al. Combined recognition imaging and force spectroscopy: a new mode for mapping and studying interaction sites at low lateral density[J]. Sci Adv Mater, 2017,9(1):128-134.
[14] Mei L, Ren Y, Busscher HJ , et al. Poisson analysis of streptococcal bond-strengthening on saliva-coated enamel[J]. J Dent Res, 2009,88(9):841-845.
[15] Sullan RM, Li JK, Crowley PJ , et al. Binding forces of Streptococcus mutans P1 adhesin[J]. ACS Nano, 2015,9(2):1448-1460.
[16] Heim KP, Sullan RM, Crowley PJ , et al. Identification of a supramolecular functional architecture of Stre-ptococcus mutans adhesin P1 on the bacterial cell surface[J]. J Biol Chem, 2015,290(14):9002-9019.
[17] Cross SE, Kreth J, Zhu L , et al. Nanomechanical properties of glucans and associated cell-surface adhesion of Streptococcus mutans probed by atomic force microscopy under in situ conditions[J]. Micro-biology, 2007,153(Pt 9):3124-3132.
[18] Bank TL, Dosen A, Giese RF , et al. Atomic force spectroscopy evidence of non-specific adhesion of Aggregatibacter actinomycetemcomitans[J]. J Nanosci Nanotechnol, 2011,11(10):8450-8456.
[19] Mei L, Busscher HJ, van der Mei HC, et al. Influence of surface roughness on streptococcal adhesion forces to composite resins[J]. Dent Mater, 2011,27(8):770-778.
[20] Yu P, Wang C, Zhou J , et al. Influence of surface properties on adhesion forces and attachment of Stre-ptococcus mutans to zirconia in vitro[J]. Biomed Res Int, 2016,2016:8901253.
[21] Verran J, Jackson S, Coulthwaite L , et al. The effect of dentifrice abrasion on denture topography and the subsequent retention of microorganisms on abraded surfaces[J]. J Prosthet Dent, 2014,112(6):1513-1522.
[22] Wang C, Zhao Y, Zheng S , et al. Effect of enamel morphology on nanoscale adhesion forces of strepto-coccal bacteria: an AFM study[J]. Scanning, 2015,37(5):313-321.
[23] Mei L, van der Mei HC, Ren Y , et al. Poisson analysis of streptococcal bond strengthening on stainless steel with and without a salivary conditioning film[J]. Langmuir, 2009,25(11):6227-6231.
[24] Fang J, Wang C, Li Y , et al. Comparison of bacterial adhesion to dental materials of polyethylene tereph-thalate (PET) and polymethyl methacrylate (PMMA) using atomic force microscopy and scanning electron microscopy[J]. Scanning, 2016,38(6):665-670.
[25] 蒋丽, 王传勇, 薛晶, 等 . 钛及氧化锆种植材料表面微观形貌对龈下细菌黏附力的影响[C]. 第八届全国口腔材料学术交流会, 上海, 2013-8-17.
Jiang L, Wang CY, Xue J , et al. Influence of surface microstucture on subginvial bacterial adhesion force to titanium and zirconia implant materials[C]. The 8th National Symposium on Dental Metarials,Shan-ghai, 2013-8-17.
[26] Feuillie C, Formosa-Dague C, Hays LM , et al. Mole-cular interactions and inhibition of the staphylococcal biofilm-forming protein SdrC[J]. Proc Natl Acad Sci USA, 2017,114(14):3738-3743.
[27] Postollec F, Norde W, de Vries J, et al. Interactive forces between co-aggregating and non-co-aggre-gating oral bacterial pairs[J]. J Dent Res, 2006,85(3):231-234.
[28] Hwang G, Marsh G, Gao L , et al. Binding force dynamics of Streptococcus mutans-glucosyltrans-ferase B to Candida albicans[J]. J Dent Res, 2015,94(9):1310-1317.
[29] Hwang G, Liu Y, Kim D , et al. Candida albicans mannans mediate Streptococcus mutans exoenzyme GtfB binding to modulate cross-kingdom biofilm development in vivo[J]. PLoS Pathog, 2017,13(6):e1006407.
[30] Prystopiuk V, Feuillie C, Herman-Bausier P , et al. Mechanical forces guiding Staphylococcus aureus cellular invasion[J]. ACS Nano, 2018,12(4):3609-3622.
[31] Becke TD, Ness S, Gürster R , et al. Single molecule force spectroscopy reveals two-domain binding mode of Pilus-1 Tip protein RrgA of Streptococcus pneu-monia to fibronectin[J]. ACS Nano, 2018,12(1):549-558.
[32] Alsteens D, Trabelsi H, Soumillion P , et al. Multipara- metric atomic force microscopy imaging of single bacteriophages extruding from living bacteria[J]. Nat Commun, 2013,4:2926.
[33] Formosa-Dague C, Speziale P, Foster TJ , et al. Zinc-dependent mechanical properties of Staphylococcus aureus biofilm-forming surface protein SasG[J]. Proc Natl Acad Sci USA, 2016,113(2):410-415.
[34] Dufrêne YF, Ando T, Garcia R , et al. Imaging modes of atomic force microscopy for application in mole-cular and cell biology[J]. Nat Nanotechnol, 2017,12(4):295-307.
[35] Liu BH, Yu LC . In-situ, time-lapse study of extracel-lular polymeric substance discharge in Streptococcus mutans biofilm[J]. Colloids Surf B Biointerfaces, 2017,150:98-105.
[36] Dupres V, Menozzi FD, Locht C , et al. Nanoscale mapping and functional analysis of individual ad-hesins on living bacteria[J]. Nat Methods, 2005,2(7):515-520.
[37] El-Kirat-Chatel S, Beaussart A, Boyd CD , et al. Single-cell and single-molecule analysis deciphers the loca-lization, adhesion, and mechanics of the biofilm ad-hesin LapA[J]. ACS Chem Biol, 2014,9(2):485-494.
[38] Beaussart A, Péchoux C, Trieu-Cuot P , et al. Mole-cular mapping of the cell wall polysaccharides of the human pathogen Streptococcus agalactiae[J]. Nano-scale, 2014,6(24):14820-14827.
[1] Xu Feng,Yi Zhang,Menghong Li,Nan Liu,Liuyi Wang,Min. Hu. Research progress on the influence of removable clear aligners on periodontal health [J]. Inter J Stomatol, 2019, 46(2): 166-170.
[2] Mengqi Liu,Kuo Gai,Li Jiang. Research progress on oral implant materials with antimicrobial properties [J]. Inter J Stomatol, 2018, 45(5): 516-521.
[3] Gai Kuo, Hao Liying, Jiang Li.. Study of the adhesion mechanism of oral Streptococcus mutans based on atomic force microscope [J]. Inter J Stomatol, 2017, 44(3): 320-324.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 458 -460 .
[8] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 452 -454 .
[9] . [J]. Inter J Stomatol, 2008, 35(S1): .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .