Int J Stomatol ›› 2026, Vol. 53 ›› Issue (2): 145-154.doi: 10.7518/gjkq.2026120

• Expert Forum •    

Juvenile idiopathic condylar resorption may fundamentally represent condylar cartilage degradation associated with pathological remodeling at growth and developmental stage initiated by aberrant occlusion

Meiqing Wang()   

  1. Occlusion Institute, Shanghai Stomatological Hospital, Stomatological Hospital and School of Stomatology, Fudan University, Shanghai 201199, China
  • Received:2025-09-26 Revised:2026-01-12 Online:2026-03-01 Published:2026-02-13
  • Contact: Meiqing Wang E-mail:wangmq0609@163.com
  • Supported by:
    Key International Cooperation Project of Nature Science Foundation of China(81920108013)

Abstract:

Juvenile idiopathic condylar resorption (JICR) is a rare temporomandibular joint problem characterized by the progressive resorption of condylar tissues, leading to mandibular ramus height reduction, mandibular retrognathia, and anterior open bite. Emerging evidence from recent animal studies in the laboratory indicated that different from conventional pathological resorption observed in developed condyles, JICR could be condylar cartilage degradation associated with pathological remodeling at growth and developmental stage initiated by aberrant occlusion. At present, however, there is an argument which is evidenced with publications in the etiology, pathogenesis, diagnosis, differential diagnosis and treatment of JICR. The etiology and pathogenesis of JICR remain obscure. Traumatic loading, including that from aberrant occlusion, plays a role in JICR. The diagnosis and differential diagnosis of JICR are challenging. They mostly rely on imaging signs of the condyle deformity, which are not significant at early stages. Making a definite diagnosis of JICR at the early stage is difficult. Retrognathia related maxillofacial deformity is often taken as an early sign of JICR. Many researchers opposed the application of orthodontic and orthognathic treatment during the active phase of JICR because of risks of exacerbating condylar resorption. However, given that traumatic occlusion is etiological to JICR, delayed intervention may compromise conservative management efficacy and progression of the condylar and orofacial deformities. Here, the author advocates for the prompt diagnosis and correction of underlying traumatic occlusion to prevent deformity progression. Effective diagnosis and management of malocclusion constitute the cornerstone for addressing this clinical conundrum.

Key words: temporomandibular joint, condyle, occlusion, idiopathic condylar resorption, open bite, juvenile

CLC Number: 

  • R782.6

TrendMD: 

Fig 2

Histomorphology of the rat mandibular condyle at 18 weeks old von Kossa stain"

Fig 3

Diagram for the mandibular condyle development, and pathogenesis of JICR and condyle resorption after growth and development"

Fig 4

Changes of occlusion and condyle CBCT images in a patient with JICR"

[1] Wolford LM, Cardenas L. Idiopathic condylar resorption: diagnosis, treatment protocol, and outco-mes[J]. Am J Orthod Dentofacial Orthop, 1999, 116(6): 667-677.
[2] Young A. Idiopathic condylar resorption: the current understanding in diagnosis and treatment[J]. J In- dian Prosthodont Soc, 2017, 17(2): 128-135.
[3] Nobrega MTC, Almeida FT, Friesen R, et al. Idiopathic condylar resorption in adolescents: a scoping review[J]. J Oral Rehabil, 2024, 51(8): 1610-1620.
[4] Mercuri LG. Osteoarthritis, osteoarthrosis, and idiopathic condylar resorption[J]. Oral Maxillofac Surg Clin North Am, 2008, 20(2): 169-183.
[5] Chamberland S. Progressive idiopathic condylar resorption: three case reports[J]. Am J Orthod Dentofacial Orthop, 2019, 156(4): 531-544.
[6] Noh HK, Park HS. Considerations for vertical control with microimplants in a idiopathic condylar resorption patient: a case report[J]. J Orthod, 2021, 48(2): 172-182.
[7] Kristensen KD, Schmidt B, Stoustrup P, et al. Idiopathic condylar resorptions: 3-dimensional condylar bony deformation, signs and symptoms[J]. Am J Orthod Dentofacial Orthop, 2017, 152(2): 214-223.
[8] Lee GH, Park JH, Lee SM, et al. Orthodontic treatment protocols for patients with idiopathic condylar resorption[J]. J Clin Pediatr Dent, 2019, 43(4): 292-303.
[9] Mitsimponas K, Mehmet S, Kennedy R, et al. Idiopathic condylar resorption[J]. Br J Oral Maxillofac Surg, 2018, 56(4): 249-255.
[10] Mercuri LG, Handelman CS. Idiopathic condylar resorption: what should we do[J]. Oral Maxillofac Surg Clin North Am, 2020, 32(1): 105-116.
[11] Tanaka E. Etiology and diagnosis for idiopathic condylar resorption in growing adolescents[J]. J Clin Med, 2023, 12(20): 6607.
[12] Alsabban L, Amarista FJ, Mercuri LG, et al. Idiopathic condylar resorption: a survey and review of the literature[J]. J Oral Maxillofac Surg, 2018, 76(11): 2316.e1-2316.e13.
[13] Sansare K, Raghav M, Mallya SM, et al. Management-related outcomes and radiographic findings of idiopathic condylar resorption: a systematic review[J]. Int J Oral Maxillofac Surg, 2015, 44(2): 209-216.
[14] Roth S, Müller K, Fischer DC, et al. Specific properties of the extracellular chondroitin sulphate proteoglycans in the mandibular condylar growth centre in pigs[J]. Arch Oral Biol, 1997, 42(1): 63-76.
[15] Tominaga K, Hirashima S, Fukuda J. An experimental model of osteoarthrosis of the temporomandibular joint in monkeys[J]. Br J Oral Maxillofac Surg, 2002, 40(3): 232-237.
[16] Lovell NC. Skeletal and dental pathology of free-ranging mountain gorillas[J]. Am J Phys Anthropol, 1990, 81(3): 399-412.
[17] Chen CP, Zhang JH, Zhang B, et al. Unilateral loss of maxillary molars in young mice leads to bilateral condylar adaptation and degenerative disease[J]. JB-MR Plus, 2022, 6(7): e10638.
[18] Nogami S, Kataoka Y, Yamauchi K, et al. Condylar resorption following compressive mechanical stress in rabbit model‒association of matrix metalloproteinases[J]. In Vivo, 2022, 36(5): 2126-2133.
[19] Nogami S, Yamauchi K, Odashima K, et al. Influen-ce of oestrogen deficiency and excessive mechanical stress on condylar head of mandible[J]. Oral Dis, 2020, 26(8): 1718-1726.
[20] Yang HJ, Hwang SJ. Effects of 17β-estradiol deficiency and mechanical overload on osseous changes in the rat temporomandibular joint[J]. J Oral Maxillofac Surg, 2020, 78(2): 214.e1-214.e14.
[21] Iwasaki T, Takahara N, Duc VV, et al. Effect of anterior disc displacement and estrogen deficiency on rabbit mandibular condyle[J]. J Oral Biosci, 2025, 67(1): 100599.
[22] Jiao K, Dai J, Wang MQ, et al. Age- and sex-related changes of mandibular condylar cartilage and subchondral bone: a histomorphometric and micro-CT study in rats[J]. Arch Oral Biol, 2010, 55(2): 155-163.
[23] Zhang YJ, Zhang J, Xu LF, et al. Unbalanced cartilage calcification during development contributes to the formation of irregular articular surfaces as revealed by micro-CT images[J]. Australas Orthod J, 2023, 39(2): 40-48.
[24] 张月姣, 徐小杰, 刘倩, 等. 偏颌大鼠模型的构建及其髁突CT影像和组织学评价[J]. 口腔颌面外科杂志, 2021, 31(5): 278-284.
Zhang YJ, Xu XJ, Liu Q, et al. Construction of the mandible deviation occlusion rat model and micro-CT radiography and histology evaluation of the mandibular condyles[J]. J Oral Maxillofac Surg, 2021, 31(5): 278-284.
[25] Alali YS, Al Habeeb KM, Al Malhook KA, et al. Diagnosis and management of idiopathic condylar resorption: a review of literature[J]. Saudi Dent J, 2024, 36(11): 1397-1405.
[26] Valladares-Neto J, Acioli GR, Teodoro AB, et al. Conservative and minimally invasive approaches to control idiopathic condylar resorption: a scoping review[J]. Int J Oral Maxillofac Surg, 2023, 52(11): 1188-1196.
[27] Gunson MJ, Arnett GW, Formby B, et al. Oral contraceptive pill use and abnormal menstrual cycles in women with severe condylar resorption: a case for low serum 17beta-estradiol as a major factor in progressive condylar resorption[J]. Am J Orthod Dentofacial Orthop, 2009, 136(6): 772-779.
[28] Ye T, Sun DL, Mu T, et al. Differential effects of high-physiological oestrogen on the degeneration of mandibular condylar cartilage and subchondral bone[J]. Bone, 2018, 111: 9-22.
[29] Park JH, Park JJ, Papademetriou M, et al. Anterior open bite due to idiopathic condylar resorption du-ring orthodontic retention of a Class Ⅱ Division 1 malocclusion[J]. Am J Orthod Dentofacial Orthop, 2019, 156(4): 555-565.
[30] Ahmad N, Chen S, Wang W, et al. 17β-estradiol induces MMP-9 and MMP-13 in TMJ fibrochondrocytes via estrogen receptor α[J]. J Dent Res, 2018, 97(9): 1023-1030.
[31] Iwasa A, Tanaka E. Signs, symptoms, and morphological features of idiopathic condylar resorption in orthodontic patients: a survey-based study[J]. J Clin Med, 2022, 11(6): 1552.
[32] Robinson JL, Cass K, Aronson R, et al. Sex diffe-rences in the estrogen-dependent regulation of temporomandibular joint remodeling in altered loading[J]. Osteoarthritis Cartilage, 2017, 25(4): 533-543.
[33] Choi J, Oh N, Kim IK. A follow-up study of condyle fracture in children[J]. Int J Oral Maxillofac Surg, 2005, 34(8): 851-858.
[34] Lin YY, Tanaka N, Ohkuma S, et al. The mandibular cartilage metabolism is altered by damaged subchondral bone from traumatic impact loading[J]. Ann Biomed Eng, 2009, 37(7): 1358-1367.
[35] Ji YD, Resnick CM, Peacock ZS. Idiopathic condylar resorption: a systematic review of etiology and management[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2020, 130(6): 632-639.
[36] Barone S, Cosentini G, Bennardo F, et al. Incidence and management of condylar resorption after orthognathic surgery: an overview[J]. Korean J Orthod, 2022, 52(1): 29-41.
[37] Nogami S, Yamauchi K, Satomi N, et al. Risk factors related to aggressive condylar resorption after orthognathic surgery for females: retrospective study[J]. Cranio, 2017, 35(4): 250-258.
[38] Catherine Z, Breton P, Bouletreau P. Condylar resorption after orthognathic surgery: a systematic review[J]. Rev Stomatol Chir Maxillofac Chir Orale, 2016, 117(1): 3-10.
[39] NiÑo-Sandoval TC, Almeida RAC, Vasconcelos BCDE. Incidence of condylar resorption after bimaxillary, LefortⅠ, and mandibular surgery: an overview[J]. Braz Oral Res, 2021, 35: e27.
[40] de Moraes PH, Rizzati-Barbosa CM, Olate S, et al. Condylar resorption after orthognathic surgery: a systematic review[J]. Int J Morphol, 2012, 30(3): 1023-1028.
[41] Mousoulea S, Kloukos D, Sampaziotis D, et al. Condylar resorption in orthognathic patients after mandibular bilateral sagittal split osteotomy: a systema-tic review[J]. Eur J Orthod, 2017, 39(3): 294-309.
[42] Hwang SJ, Haers PE, Zimmermann A, et al. Surgical risk factors for condylar resorption after orthognathic surgery[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2000, 89(5): 542-552.
[43] Scheerlinck JP, Stoelinga PJ, Blijdorp PA, et al. Sa-gittal split advancement osteotomies stabilized with miniplates. A 2-5-year follow-up[J]. Int J Oral Ma-xillofac Surg, 1994, 23(3): 127-131.
[44] Yoshioka I, Khanal A, Tominaga K, et al. Vertical ramus versus sagittal split osteotomies: comparison of stability after mandibular setback[J]. J Oral Maxillofac Surg, 2008, 66(6): 1138-1144.
[45] Kobayashi T, Izumi N, Kojima T, et al. Progressive condylar resorption after mandibular advancement[J]. Br J Oral Maxillofac Surg, 2012, 50(2): 176-180.
[46] Nunes de Lima V, Faverani LP, Santiago JF, et al. Evaluation of condylar resorption rates after orthognathic surgery in Class Ⅱ and Ⅲ dentofacial deformities: a systematic review[J]. J Cranio Maxillofac Surg, 2018, 46(4): 668-673.
[47] Vandeput AS, Verhelst PJ, Jacobs R, et al. Condylar changes after orthognathic surgery for Class Ⅲ dentofacial deformity: a systematic review[J]. Int J Oral Maxillofac Surg, 2019, 48(2): 193-202.
[48] He Z, Ji HZ, Du W, et al. Management of condy-lar resorption before or after orthognathic surgery: a systematic review[J]. J Craniomaxillofac Surg, 2019, 47(7): 1007-1014.
[49] Hoppenreijs TJ, Freihofer HP, Stoelinga PJ, et al. Condylar remodelling and resorption after Le Fort Ⅰand bimaxillary osteotomies in patients with anterior open bite. A clinical and radiological study[J]. Int J Oral Maxillofac Surg, 1998, 27(2): 81-91.
[50] Park SB, Yang YM, Kim YI, et al. Effect of bimaxillary surgery on adaptive condylar head remodeling: metric analysis and image interpretation using cone-beam computed tomography volume superimposition[J]. J Oral Maxillofac Surg, 2012, 70(8): 1951-1959.
[51] de Mol van Otterloo JJ, Dorenbos J, Tuinzing DB, et al. TMJ performance and behaviour in patients more than 6 years after Le FortⅠ osteotomy[J]. Br J Oral Maxillofac Surg, 1993, 31(2): 83-86.
[52] Tanaka E, Koolstra JH. Biomechanics of the temporomandibular joint[J]. J Dent Res, 2008, 87(11): 989-991.
[53] He YF, Lin H, Lin QP, et al. Morphologic changes in idiopathic condylar resorption with different degrees of bone loss[J]. Oral Surg Oral Med Oral Pa-thol Oral Radiol, 2019, 128(3): 332-340.
[54] Alimanovic D, Pedersen TK, Matzen LH, et al. Comparing clinical and radiological manifestations of adolescent idiopathic condylar resorption and juvenile idiopathic arthritis in the temporomandibular joint[J]. J Oral Maxillofac Surg, 2021, 79(4): 774-785.
[55] Cannizzaro E, Schroeder S, Bolt I, et al. Temporomandibular joint involvement in children with juvenile idiopathic arthritis[J]. Pediatr Rheumatol, 2008, 6(1): P92.
[56] Boos-Lima FBDJ, Guastaldi FPS, Nielsen GP, et al. Histopathology of idiopathic condylar resorption differs from temporomandibular joint-only juvenile idiopathic arthritis[J]. J Oral Maxillofac Surg, 2025, 83(1): 26-36.
[57] Shen P, Zhang D, Luo Y, et al. Characteristics of patients with temporomandibular joint idiopathic condylar resorption[J]. Cranio, 2025, 43(1): 151-157.
[58] Raman P. Physiologic neuromuscular dental paradigm for the diagnosis and treatment of temporomandibular disorders[J]. J Calif Dent Assoc, 2014, 42(8): 563-571.
[59] Papadaki ME, Tayebaty F, Kaban LB, et al. Condylar resorption[J]. Oral Maxillofac Surg Clin N Am, 2007, 19(2): 223-234.
[60] Exposto CR, Stoustrup P, Kristensen KD, et al. Condylar changes in patients with idiopathic condylar resorption: retrospective 2-year follow-up CBCT-based case-control study[J]. Eur J Orthod, 2020, 42(6): 619-625.
[61] Mao BC, Tian YJ, Li J, et al. A quantitative analysis of facial changes after orthodontic treatment with vertical control in patients with idiopathic condylar resorption[J]. Orthod Craniofac Res, 2023, 26(3): 402-414.
[62] Yang HJ, Hwang SJ. Bone mineral density and mandibular advancement as contributing factors for postoperative relapse after orthognathic surgery in patients with preoperative idiopathic condylar resorption: a prospective study with preliminary 1-year follow-up[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2015, 120(2): 112-118.
[63] Wang MJ, Qian YF, Zhao HJ, et al. Mandibular stability and condylar changes following orthognathic surgery in mandibular hypoplasia patients associa-ted with preoperative condylar resorption[J]. Clin Oral Investig, 2022, 26(12): 7083-7093.
[64] Park Y, Chen S, Ahmad N, et al. Estrogen selectively enhances TMJ disc but not knee meniscus matrix loss[J]. J Dent Res, 2019, 98(13): 1532-1538.
[1] Ao Yu,Guangli Han. Development of bone-anchored maxillary protraction for the orthopedic treatment of classmalocclusion in growing patients [J]. Int J Stomatol, 2026, 53(1): 19-25.
[2] Rong Li,Qing Zhao. Treatment of adult Class Ⅱ division 2 malocclusion based on temporomandibular joint [J]. Int J Stomatol, 2024, 51(6): 687-698.
[3] Zebin Li,Xin Liu,Meiqing Wang. Development of research on the association between occlusion and body posture [J]. Int J Stomatol, 2024, 51(6): 772-784.
[4] Taoli Zhang,Yanji Gong,Fang Liu,Qinlanhui Zhang,Yang Liu. Association of the degenerative changes of the temporomandibular joint with craniofacial morphology and the internal structures of temporomandibular joint [J]. Int J Stomatol, 2024, 51(5): 642-652.
[5] Jingwen Han,Lei Wang,Shiqi Ren,Hongyu Wang,Yingyi Huang,Jiamin Li,Yan Zheng. Correlation between morphological characteristics of the temporomandibular joint and three-dimensional mandi-bular growth in adolescents [J]. Int J Stomatol, 2024, 51(4): 456-466.
[6] Qing Xue,Huichuan Qi,Min Hu. Research progress of primary cilia in bone remodelling and reconstruction of temporomandibular joint cartilage under mechanical stress [J]. Int J Stomatol, 2024, 51(2): 201-207.
[7] Xu Shukui,Zhang Shan,Xie Xinyu,Ma Wensheng.. Progress in research into the long-term stability of maxillary protraction therapy in skeletal classmalocclusion [J]. Int J Stomatol, 2023, 50(6): 646-652.
[8] Wang Luodan,Fan Hong. Morphological characteristics of sella turcica and its relationship with malocclusion [J]. Int J Stomatol, 2023, 50(6): 653-660.
[9] Yang Dongye,Zhu Ping,Wu Shuyi. The influencing factors and clinical significance of tongue position [J]. Int J Stomatol, 2023, 50(6): 723-728.
[10] Zhao Zhihe.. Difficulty assessment of invisible orthodontic treatment based on treatment plan and tooth movement pattern [J]. Int J Stomatol, 2022, 49(4): 373-379.
[11] He Hong.. Clinical diagnosis and strategies for early orthodontic treatment of Class Ⅲ malocclusion with tonsillar hypertrophy in children [J]. Int J Stomatol, 2022, 49(3): 249-254.
[12] Han Jingwen,Ren Shiqi,Liu Xingyu,Lang Xin,Chu Mengshi,Waseem Saleh Abdo Kaid Algumaei,Zheng Yan. Features of condyles of adult patients with different vertical and sagittal skeletal facial types [J]. Int J Stomatol, 2022, 49(2): 153-162.
[13] Li Ruyi,Luo Feng,Wan Qianbing. Principle and application progress of real-time mandibular motion recording system [J]. Int J Stomatol, 2022, 49(2): 182-189.
[14] Yang Yunqi,Lin Yangyang,Hou Min. Research advances on jaw stability and influencing factors in surgery-first approach [J]. Int J Stomatol, 2022, 49(2): 227-232.
[15] Zhang Zhe,Liu Jin,Wang Weihong,Chen Zhiqiang,Yang Chun,Liu Li. Calcium pyrophosphate deposition disease complicated by temporomandibular joint dislocation [J]. Int J Stomatol, 2021, 48(6): 664-667.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!