Int J Stomatol ›› 2022, Vol. 49 ›› Issue (2): 182-189.doi: 10.7518/gjkq.2022031
• Reviews • Previous Articles Next Articles
Li Ruyi(),Luo Feng,Wan Qianbing(
)
[1] |
Bando E, Nishigawa K, Nakano M, et al. Current status of researches on jaw movement and occlusion for clinical application[J]. Jpn Dent Sci Rev, 2009, 45(2): 83-97.
doi: 10.1016/j.jdsr.2009.04.001 |
[2] |
Li JY, Sommer C, Wang HL, et al. Creating a virtual patient for completely edentulous computer-aided implant surgery: a dental technique[J]. J Prosthet Dent, 2021, 125(4): 564-568.
doi: 10.1016/j.prosdent.2020.02.026 |
[3] |
Joda T, Gallucci GO, Wismeijer D, et al. Augmen-ted and virtual reality in dental medicine: a systema-tic review[J]. Comput Biol Med, 2019, 108: 93-100.
doi: S0010-4825(19)30085-X pmid: 31003184 |
[4] |
Harris BT, Montero D, Grant GT, et al. Creation of a 3-dimensional virtual dental patient for computer-guided surgery and CAD-CAM interim complete removable and fixed dental prostheses: a clinical report[J]. J Prosthet Dent, 2017, 117(2): 197-204.
doi: S0022-3913(16)30281-5 pmid: 27666493 |
[5] | 刘峰, 师晓蕊. 面弓𬌗架应用基本技术[M]. 北京: 人民卫生出版社, 2018: 58-63. |
Liu F, Shi XR. The clinical application of facebow and articulator[M]. Beijing: People’s Medical Publishing House, 2018: 58-63. | |
[6] |
冯海兰, 周崇阳, 李平. 下颌绞链运动轴点稳定性及位置的探讨[J]. 中华口腔医学杂志, 1997, 32(3): 139-142.
pmid: 10680521 |
Feng HL, Zhou CY, Li P. Evaluation of reprodu-cibilty of the hinge axis and it’s positional relation to condyles[J]. Chin J Stomatol, 1997, 32(3): 139-142.
pmid: 10680521 |
|
[7] | Utz KH, Duvenbeck H, Oettershagen K. Variation of the terminal hinge axial position in different methods of registration[J]. Schweiz Monatsschr Zahn-med, 1990, 100(4): 412-419. |
[8] |
Lotzmann U. Considerations of precision and consistance of mandibular transverse hinge axis[J]. ZWR, 1990, 99(5): 372-379.
pmid: 2220112 |
[9] |
Lotzmann U. Results of incorrectly positioned hinge axis on axiographic tracings of mandibular movement[J]. ZWR, 1990, 99(6): 445-448.
pmid: 2220115 |
[10] | Kurbad A. Three-dimensional registration of real jaw motion tracking data and its therapeutic consequences[J]. Int J Comput Dent, 2018, 21(1): 57-70. |
[11] |
Aslanidou K, Kau CH, Vlachos C, et al. The fabrication of a customized occlusal splint based on the merging of dynamic jaw tracking records, cone beam computed tomography, and CAD-CAM digital impression[J]. J Orthod Sci, 2017, 6(3): 104-109.
doi: 10.4103/jos.JOS_61_16 pmid: 28717635 |
[12] |
Hanssen N, Ruge S, Kordass B. SICAT function: ana-tomical real-dynamic articulation by merging cone beam computed tomography and jaw motion trac-king data[J]. Int J Comput Dent, 2014, 17(1): 65-74.
pmid: 24791466 |
[13] |
Kang DW, Mongini F, Rossi F, et al. A system for the study of jaw movements[J]. Cranio, 1993, 11(1): 63-67.
pmid: 8358809 |
[14] |
Fang JJ, Kuo TH. Modelling of mandibular movement[J]. Comput Biol Med, 2008, 38(11/12): 1152-1162.
doi: 10.1016/j.compbiomed.2008.09.001 |
[15] |
Hayashi T, Kurokawa M, Miyakawa M, et al. A high-resolution line sensor-based photostereometric system for measuring jaw movements in 6 degrees of freedom[J]. Front Med Biol Eng, 1994, 6(3): 171-186.
pmid: 7727316 |
[16] |
Kwon JH, Im S, Chang M, et al. A digital approach to dynamic jaw tracking using a target tracking system and a structured-light three-dimensional scanner[J]. J Prosthodont Res, 2019, 63(1): 115-119.
doi: 10.1016/j.jpor.2018.05.001 |
[17] |
Jankelson B, Swain CW, Crane PF, et al. Kinesiometric instrumentation: a new technology[J]. J Am Dent Assoc, 1975, 90(4): 834-840.
pmid: 1055153 |
[18] |
Wessberg GA, Washburn MC, Epker BN, et al. Evaluation of mandibular rest position in subjects with diverse dentofacial morphology[J]. J Prosthet Dent, 1982, 48(4): 451-460.
pmid: 6957600 |
[19] |
Chang WS, Romberg E, Driscoll CF, et al. An in vitro evaluation of the reliability and validity of an electronic pantograph by testing with five different articulators[J]. J Prosthet Dent, 2004, 92(1): 83-89.
doi: 10.1016/j.prosdent.2004.04.011 |
[20] |
Bernhardt O, Küppers N, Rosin M, et al. Comparative tests of arbitrary and kinematic transverse horizontal axis recordings of mandibular movements[J]. J Prosthet Dent, 2003, 89(2): 175-179.
pmid: 12616238 |
[21] | 易新竹. 𬌗学[M]. 3版. 北京: 人民卫生出版社, 2017: 29-31, 77-88. |
Yi XZ. Occlusion[M]. 3rd ed. Beijing: People’s Medical Publishing House, 2017: 29-31, 77-88. | |
[22] |
Linsen SS, Reich RH, Teschke M. Mandibular kinematics in patients with alloplastic total temporomandibular joint replacement: a prospective study[J]. J Oral Maxillofac Surg, 2012, 70(9): 2057-2064.
doi: 10.1016/j.joms.2012.05.026 |
[23] |
da Cunha DV, Degan VV, Vedovello Filho M, et al. Real-time three-dimensional jaw tracking in temporomandibular disorders[J]. J Oral Rehabil, 2017, 44(8): 580-588.
doi: 10.1111/joor.12521 pmid: 28498502 |
[24] | 王晶, 陈俊鹏, 王洋, 等. 数字化下颌运动记录及咀嚼肌肌电图在下颌骨肿瘤患者口颌功能评价中的应用[J]. 北京大学学报(医学版), 2019, 51(3): 571-578. |
Wang J, Chen JP, Wang Y, et al. Application of digital mandibular movement record and masticatory muscle electromyography in the evaluation of stomatognathic function in patients with mandibular tumor[J]. J Peking Univ (Heal Sci), 2019, 51(3): 571-578. | |
[25] |
Gurbanov V, Bas B, Öz AA. Evaluation of stresses on temporomandibular joint in the use of Class Ⅱ and Ⅲ orthodontic elastics: a three-dimensional finite element study[J]. J Oral Maxillofac Surg, 2020, 78(5): 705-716.
doi: 10.1016/j.joms.2019.11.022 |
[26] |
Aslanidou K, Xie RB, Christou T, et al. Evaluation of temporomandibular joint function after orthognathic surgery using a jaw tracker[J]. J Orthod, 2020, 47(2): 140-148.
doi: 10.1177/1465312520908277 pmid: 32114874 |
[27] |
He SS, Kau CH, Liao LN, et al. The use of a dyna-mic real-time jaw tracking device and cone beam computed tomography simulation[J]. Ann Maxillofac Surg, 2016, 6(1): 113-119.
doi: 10.4103/2231-0746.186142 |
[28] | Quast A, Santander P, Witt D, et al. Traditional face-bow transfer versus three-dimensional virtual reconstruction in orthognathic surgery[J]. Int J Oral Ma-xillofac Surg, 2019, 48(3): 347-354. |
[29] |
Ritto FG, Schmitt ARM, Pimentel T, et al. Comparison of the accuracy of maxillary position between conventional model surgery and virtual surgical planning[J]. Int J Oral Maxillofac Surg, 2018, 47(2): 160-166.
doi: 10.1016/j.ijom.2017.08.012 |
[30] | 刘志明, 付东杰, 张周文, 等. 不良修复体与颞下颌关节紊乱病的相关性研究[J]. 检验医学与临床, 2015, 12(19): 2882-2883, 2886. |
Liu ZM, Fu DJ, Zhang ZW, et al. Correlation between improper dental prosthetic restoration and temporomandibular disorders[J]. Lab Med Clin, 2015, 12(19): 2882-2883, 2886. | |
[31] |
Yohn K. The face bow is irrelevant for making prostheses and planning orthognathic surgery[J]. J Am Dent Assoc, 2016, 147(6): 421-426.
doi: 10.1016/j.adaj.2015.12.011 |
[32] |
Farias-Neto A, Dias AH, de Miranda BF, et al. Face-bow transfer in prosthodontics: a systematic review of the literature[J]. J Oral Rehabil, 2013, 40(9): 686-692.
doi: 10.1111/joor.12081 pmid: 23829310 |
[33] |
Laird MF, Ross CF, O’Higgins P. Jaw kinematics and mandibular morphology in humans[J]. J Hum Evol, 2020, 139: 102639.
doi: S0047-2484(18)30359-2 pmid: 31841671 |
[1] | Xue Du,Fang Qu,Weicai Liu. Establishment of a three-dimensional virtual dental patient and its application in esthetic restoration [J]. Inter J Stomatol, 2018, 45(6): 695-702. |
[2] | Zhan Danting, Zhang Fan, Zheng Lige. Application and research progress on virtual articulator [J]. Inter J Stomatol, 2018, 45(2): 228-232. |
[3] | Wan Qianbing. Several problems on monolithic zirconia crowns [J]. Inter J Stomatol, 2018, 45(1): 9-13. |
[4] | Chen Chunxiu, Wen Xuejin.. Nursing cooperation for computer aided design and computer aided manufacturing of zirconia ceramic restoration system [J]. Inter J Stomatol, 2014, 41(2): 140-142. |