Int J Stomatol ›› 2024, Vol. 51 ›› Issue (5): 642-652.doi: 10.7518/gjkq.2024062

• Reviews • Previous Articles    

Association of the degenerative changes of the temporomandibular joint with craniofacial morphology and the internal structures of temporomandibular joint

Taoli Zhang(),Yanji Gong,Fang Liu,Qinlanhui Zhang,Yang Liu()   

  1. State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Dept. of Temporomandibular Joint, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2023-12-20 Revised:2024-04-19 Online:2024-09-01 Published:2024-09-14
  • Contact: Yang Liu E-mail:1669173745@qq.com;liu@scu.edu.cn
  • Supported by:
    Natural Science Foundation of Sichuan Province(2023NSFSC0568);Clinical Research Project of West China Hospital of Stomatology, Sichuan University(LCYJ2023-YF-3)

Abstract:

Owing to their complex etiologies, degenerative temporomandibular joint (TMJ) diseases are characterized through the imaging of condylar bone destruction, hyperplasia, sclerosis, cystic changes, or morphological shortening of the condyle. Relevant clinical studies have found that TMJ degenerations are common in patients with skeletal Class Ⅱ or hyperdivergent deformities and those with facial asymmetry. A link has been found between degenerative changes in the condyle and conditions such as articular disk displacement without reduction (DDw/oR) in the TMJ structures. Nevertheless, the causes and effects of the correlation remain unclear. In this work, the relationship between TMJ degenerative changes and craniofacial morphology and the internal structures of the joints were reviewed from an anatomical point of view. Finally, the possible causes of TMJ degenerations were discussed from the biomechanical point of view to provide a reference for clinicians to understand TMJ degenerations and make clinical decisions.

Key words: mandibular condyle, degenerative joint disease, temporomandibular joint, skeletal pattern, facial asymmetry, malocclusion

CLC Number: 

  • R782.6

TrendMD: 
1 Schiffman E, Ohrbach R, Truelove E, et al. Diagnostic criteria for temporomandibular disorders (DC/TMD) for clinical and research applications: recommendations of the international RDC/TMD consortium network and orofacial pain special interest group[J]. J Oral Facial Pain Headache, 2014, 28(1): 6-27.
2 傅开元, 胡敏, 余强, 等. 颞下颌关节紊乱病锥形束CT检查规范及诊断标准的专家共识[J]. 中华口腔医学杂志, 2020, 55(9): 613-616.
Fu KY, Hu M, Yu Q, et al. Experts consensus on cone-beam CT examination specification and diagnostic criteria of temporomandibular disorders[J]. Chin J Stomatol, 2020, 55(9): 613-616.
3 Ma ZG, Xie QY, Yang C, et al. Can anterior repositioning splint effectively treat temporomandibular joint disc displacement[J]. Sci Rep, 2019, 9(1): 534.
4 Lei J, Yap AU, Liu MQ, et al. Condylar repair and regeneration in adolescents/young adults with early-stage degenerative temporomandibular joint disea-se: a randomised controlled study[J]. J Oral Rehabil, 2019, 46(8): 704-714.
5 Fang LL, Ye YS, Tan X, et al. Overloading stress-induced progressive degeneration and self-repair in condylar cartilage[J]. Ann N Y Acad Sci, 2021, 1503(1): 72-87.
6 Toh AQJ, Chan JLH, Leung YY. Mandibular asymmetry as a possible etiopathologic factor in temporomandibular disorder: a prospective cohort of 134 patients[J]. Clin Oral Investig, 2021, 25(7): 4445-4450.
7 Chen S, Lei J, Fu KY, et al. Cephalometric analysis of the facial skeletal morphology of female patients exhibiting skeletal Class Ⅱ deformity with and without temporomandibular joint osteoarthrosis[J]. PLoS One, 2015, 10(10): e0139743.
8 Kang JH, Yang IH, Hyun HK, et al. Dental and ske-letal maturation in female adolescents with temporomandibular joint osteoarthritis[J]. J Oral Rehabil, 2017, 44(11): 879-888.
9 Dadgar-Yeganeh A, Hatcher DC, Oberoi S. Association between degenerative temporomandibular joint disorders, vertical facial growth, and airway dimension[J]. J World Fed Orthod, 2021, 10(1): 20-28.
10 Ricketts RM. A foundation for cephalometric communication[J]. Am J Orthod, 1960, 46(5): 330-357.
11 Horn AJ. Facial height index[J]. Am J Orthod Dentofacial Orthop, 1992, 102(2): 180-186.
12 Gateño J, Jones TL, Shen SGF, et al. Fluctuating asymmetry of the normal facial skeleton[J]. Int J Oral Maxillofac Surg, 2018, 47(4): 534-540.
13 Krisjane Z, Urtane I, Krumina G, et al. The prevalence of TMJ osteoarthritis in asymptomatic patients with dentofacial deformities: a cone-beam CT study[J]. Int J Oral Maxillofac Surg, 2012, 41(6): 690-695.
14 Walewski LÂ, Tolentino ES, Yamashita FC, et al. Cone beam computed tomography study of osteoarthritic alterations in the osseous components of temporomandibular joints in asymptomatic patients according to skeletal pattern, gender, and age[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2019, 128(1): 70-77.
15 Sun ZP, Zou BS, Zhao YP, et al. Craniofacial morphology of Chinese patients with bilateral temporomandibular joint osteoarthrosis[J]. Chin J Dent Res, 2011, 14(1): 21-27.
16 Ioi H, Matsumoto R, Nishioka M, et al. Relationship of TMJ osteoarthritis/osteoarthrosis to head posture and dentofacial morphology[J]. Orthod Craniofac Res, 2008, 11(1): 8-16.
17 Liu W, Liu SY, Xiong X, et al. Condyle bone destruction: the association between temporomandibular joint vibration and finite element analysis[J]. Oral Radiol, 2022, 38(4): 565-574.
18 Kajii TS, Fujita T, Sakaguchi Y, et al. Osseous ch-anges of the mandibular condyle affect backward-rotation of the mandibular ramus in Angle Class Ⅱorthodontic patients with idiopathic condylar resorption of the temporomandibular joint[J]. Cranio, 2019, 37(4): 264-271.
19 Tanaka EM, Sato S. Longitudinal alteration of the occlusal plane and development of different dentoskeletal frames during growth[J]. Am J Orthod Dentofacial Orthop, 2008, 134(5): 602.e1-602.e11.
20 叶瑞, 王晟, 裴姣, 等. 𬌗平面与下颌矢状向位置关系的X线头影测量研究[J]. 华西口腔医学杂志, 2012, 30(6): 610-614.
Ye R, Wang S, Pei J, et al. Cephalometric analysis of the relationship between occlusal plane and sagittal position of the mandible[J]. West China J Stomatol, 2012, 30(6): 610-614.
21 钟嘉伟, 范佩迪, 胡首杉, 等. 前后𬌗平面与颞下颌骨关节病关系的影像研究[J]. 华西口腔医学杂志, 2023, 9(3): 297-304.
Zhong JW, Fan PD, Hu SS, et al. Imaging study on the relationship between anterior and posterior occlusal planes and temporomandibular osteoarthrosis[J]. West China J Stomatol, 2023, 9(3): 297-304.
22 张天禛, 郑新宇, 张伟, 等. 山东地区不同垂直骨面型成人Ⅱ类患者𬌗平面倾斜度的锥形束CT转化分析[J]. 解剖学报, 2022, 53(2): 210-216.
Zhang TZ, Zheng XY, Zhang W, et al. Cone-beam CT analysis of occlusal planes between different vertical skeletal types of adult Class Ⅱ malocclusions in Shandong province[J]. Acta Anat Sin, 2022, 53(2): 210-216.
23 Thiesen G, Gribel BF, Freitas MPM, et al. Craniofacial features affecting mandibular asymmetries in skeletal Class Ⅱ patients[J]. J Orofac Orthop, 2017, 78(5): 437-445.
24 Tran Duy TD, Jinnavanich S, Chen MC, et al. Are signs of degenerative joint disease associated with chin deviation[J]. J Oral Maxillofac Surg, 2020, 78(8): 1403-1414.
25 Xie QY, Yang C, He DM, et al. Is mandibular asymmetry more frequent and severe with unilateral disc displacement[J]. J Craniomaxillofac Surg, 2015, 43(1): 81-86.
26 Evangelista K, Teodoro AB, Bianchi J, et al. Prevalence of mandibular asymmetry in different skeletal sagittal patterns[J]. Angle Orthod, 2022, 92(1): 118-126.
27 Matsumoto R, Ioi H, Goto TK, et al. Relationship between the unilateral TMJ osteoarthritis/osteoarth-rosis, mandibular asymmetry and the EMG activity of the masticatory muscles: a retrospective study[J]. J Oral Rehabil, 2010, 37(2): 85-92.
28 Zhao C, Kurita H, Kurashina K, et al. Temporomandibular joint response to mandibular deviation in rabbits detected by 3D micro-CT imaging[J]. Arch Oral Biol, 2010, 55(12): 929-937.
29 Li CX, Xie X, Li MJ, et al. A pilot investigation of condylar position and asymmetry in patients with unilateral posterior scissors-bite malocclusion based on three-dimensional reconstructive imaging technique[J]. BMC Musculoskelet Disord, 2023, 24(1): 253.
30 Abramowicz S, Levy JM, Prahalad S, et al. Temporomandibular joint involvement in children with juvenile idiopathic arthritis: a preliminary report[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2019, 127(1): 19-23.
31 Seo BY, An JS, Chang MS, et al. Changes in condylar dimensions in temporomandibular joints with disk displacement[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2020, 129(1): 72-79.
32 Çamlıdağ İ, Sayıt AT, Elmalı M. Is condyle morphology a factor for anterior temporomandibular disc displacement[J]. Turk J Med Sci, 2022, 52(5): 1609-1615.
33 de Farias JF, Melo SL, Bento PM, et al. Correlation between temporomandibular joint morphology and disc displacement by MRI[J]. Dentomaxillofac Radiol, 2015, 44(7): 20150023.
34 Hirata FH, Guimarães AS, Oliveira JX, et al. Eva-luation of TMJ articular eminence morphology and disc patterns in patients with disc displacement in MRI[J]. Braz Oral Res, 2007, 21(3): 265-271.
35 Marpaung C, van Selms MKA, Lobbezoo F. Temporomandibular joint anterior disc displacement with reduction in a young population: prevalence and risk indicators[J]. Int J Paediatr Dent, 2019, 29(1): 66-73.
36 Jung WS, Kim H, Jeon DM, et al. Magnetic resonance imaging-verified temporomandibular joint disk displacement in relation to sagittal and vertical jaw deformities[J]. Int J Oral Maxillofac Surg, 2013, 42(9): 1108-1115.
37 Ooi K, Inoue N, Matsushita K, et al. Incidence of anterior disc displacement without reduction of the temporomandibular joint in patients with dentofacial deformity[J]. Int J Oral Maxillofac Surg, 2018, 47(4): 505-510.
38 Yang IH, Moon BS, Lee SP, et al. Skeletal differen-ces in patients with temporomandibular joint disc displacement according to sagittal jaw relationship[J]. J Oral Maxillofac Surg, 2012, 70(5): e349-e360.
39 Park SH, Han WJ, Chung DH, et al. Relationship between rotational disc displacement of the temporomandibular joint and the dentoskeletal morpho-logy[J]. Korean J Orthod, 2021, 51(2): 105-114.
40 Byun ES, Ahn SJ, Kim TW. Relationship between internal derangement of the temporomandibular joint and dentofacial morphology in women with anterior open bite[J]. Am J Orthod Dentofacial Orthop, 2005, 128(1): 87-95.
41 Legrell PE, Isberg A. Mandibular height asymmetry following experimentally induced temporomandibular joint disk displacement in rabbits[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 1998, 86(3): 280-285.
42 Xie QY, Yang C, He DM, et al. Will unilateral temporomandibular joint anterior disc displacement in teenagers lead to asymmetry of condyle and mandible? A longitudinal study[J]. J Craniomaxillofac Surg, 2016, 44(5): 590-596.
43 Bryndahl F, Warfvinge G, Eriksson L, et al. Cartilage changes link retrognathic mandibular growth to TMJ disc displacement in a rabbit model[J]. Int J Oral Maxillofac Surg, 2011, 40(6): 621-627.
44 Toshima H, Ogura I. Characteristics of patients with temporomandibular joint osteoarthrosis on magnetic resonance imaging[J]. J Med Imaging Radiat Oncol, 2020, 64(5): 615-619.
45 Seo BY, Huh KH, An JS, et al. Relationship of computed tomography-verified degenerative condylar morphology with temporomandibular joint disk displacement and sex[J]. Oral Surg Oral Med Oral Pa-thol Oral Radiol, 2021, 132(1): 93-103.
46 Gil C, Santos KC, Dutra ME, et al. MRI analysis of the relationship between bone changes in the temporomandibular joint and articular disc position in symptomatic patients[J]. Dentomaxillofac Radiol, 2012, 41(5): 367-372.
47 Lei J, Han JH, Liu MQ, et al. Degenerative temporomandibular joint changes associated with recent-onset disc displacement without reduction in adolescents and young adults[J]. J Craniomaxillofac Surg, 2017, 45(3): 408-413.
48 Takaoka R, Yatani H, Senzaki Y, et al. Relative risk of positional and dynamic temporomandibular disc abnormality for osteoarthritis-magnetic resonance imaging study[J]. J Oral Rehabil, 2021, 48(4): 375-383.
49 Wu Y, Cisewski SE, Coombs MC, et al. Effect of sustained joint loading on TMJ disc nutrient environment[J]. J Dent Res, 2019, 98(8): 888-895.
50 Abe S, Kawano F, Kohge K, et al. Stress analysis in human temporomandibular joint affected by anterior disc displacement during prolonged clenching[J]. J Oral Rehabil, 2013, 40(4): 239-246.
51 刘洋. 正中关系的可重复性考察及对其历史和发展的考量[J]. 国际口腔医学杂志, 2019, 46(1): 1-4.
Liu Y. Repeatability of centric relation registration methods and their effect on concept development[J]. Int J Stomatol, 2019, 46(1): 1-4.
52 Al-Hadad SA, ALyafrusee ES, Abdulqader AA, et al. Comprehensive three-dimensional positional and morphological assessment of the temporomandibular joint in skeletal Class Ⅱ patients with mandibular retrognathism in different vertical skeletal patterns[J]. BMC Oral Health, 2022, 22(1): 149.
53 Lin M, Xu YF, Wu H, et al. Comparative cone-beam computed tomography evaluation of temporomandibular joint position and morphology in female patients with skeletal Class Ⅱ malocclusion[J]. J Int Med Res, 2020, 48(2): 300060519892388.
54 Noh KJ, Baik HS, Han SS, et al. Differences in mandibular condyle and glenoid fossa morphology in relation to vertical and sagittal skeletal patterns: a cone-beam computed tomography study[J]. Korean J Orthod, 2021, 51(2): 126-134.
55 Chae JM, Park JH, Tai K, et al. Evaluation of condyle-fossa relationships in adolescents with various skeletal patterns using cone-beam computed tomo-graphy[J]. Angle Orthod, 2020, 90(2): 224-232.
56 Song J, Cheng MJ, Qian YF, et al. Cone-beam CT evaluation of temporomandibular joint in permanent dentition according to Angle’s classification[J]. Oral Radiol, 2020, 36(3): 261-266.
57 de Pontes MLC, Melo SLS, Bento PM, et al. Correlation between temporomandibular joint morphometric measurements and gender, disk position, and condylar position[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2019, 128(5): 538-542.
58 陶珂金, 刘光俊, 冯剑颖. 颞下颌关节间隙改变与关节盘移位及程度的关系[J]. 口腔颌面修复学杂志, 2022, 23(3): 196-200.
Tao KJ, Liu GJ, Feng JY. Relationship of temporomandibular joint space to disc displacement and degree[J]. Chin J Prosthodont, 2022, 23(3): 196-200.
59 Rabelo KA, Sousa Melo SL, Torres MGG, et al. Assessment of condyle position, fossa morphology, and disk displacement in symptomatic patients[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2017, 124(2): 199-207.
60 张宁, 高思文, 郭隽, 等. 青少年颞下颌关节骨关节病患者髁突在关节窝内间隙变化与骨质破坏位置的相关性[J]. 中国组织工程研究, 2022, 26(29): 4593-4597.
Zhang N, Gao SW, Guo J, et al. Correlation between articular fossa space and bone destruction location of the condyle in adolescents with temporomandibular joint osteoarthrosis[J]. Chin J Tissue Eng Res, 2022, 26(29): 4593-4597.
61 刘华蔚, 毕文婷, 李永锋, 等. 颞下颌关节骨关节病的螺旋CT和锥形束CT影像学比较观察[J]. 中华口腔医学杂志, 2021, 56(8): 747-752.
Liu HW, Bi WT, Li YF, et al. A comparative study on the radiographs of spiral CT and cone-beam CT in temporomandibular joint osteoarthrosis[J]. Chin J Stomatol, 2021, 56(8): 747-752.
62 Yang HJ, Kim DS, Yi WJ, et al. Reduced joint distance during TMJ movement in the posterior condylar position[J]. J Craniomaxillofac Surg, 2013, 41(7): e159-e164.
63 Yalcin ED, Ararat E. Cone-beam computed tomography study of mandibular condylar morphology[J]. J Craniofac Surg, 2019, 30(8): 2621-2624.
64 Liu XY, Xu QP, Guo J. The relationship between the size of temporomandibular joint condyle and the sagittal disc-condyle position in adults[J]. Cranio, 2021: 1-8.
65 韩婧文, 任诗琦, 刘星宇, 等. 成人不同垂直及矢状骨面型髁突特征的研究[J]. 国际口腔医学杂志, 2022, 49(2): 153-162.
Han JW, Ren SQ, Liu XY, et al. Features of condyles of adult patients with different vertical and sagittal skeletal facial types[J]. Int J Stomatol, 2022, 49(2): 153-162.
66 梁晓伟, 周丹, 岳莉, 等. 安氏Ⅲ类错𬌗不同垂直骨面型患者颞下颌关节间隙的CBCT比较分析[J]. 实用口腔医学杂志, 2021, 37(6): 829-832.
Liang XW, Zhou D, Yue L, et al. CBCT comparative analysis of TMJ space of different vertical facial types in the subjects with angle Class Ⅲ malocclusion[J]. J Pract Stomatol, 2021, 37(6): 829-832.
67 Liu YS, Yap AU, Lei J, et al. Association between hypoplastic condyles and temporomandibular joint disc displacements: a cone beam computed tomography and magnetic resonance imaging metrical analysis[J]. Int J Oral Maxillofac Surg, 2020, 49(7): 932-939.
68 Derwich M, Mitus-Kenig M, Pawlowska E. Morphology of the temporomandibular joints regarding the presence of osteoarthritic changes[J]. Int J Environ Res Public Health, 2020, 17(8): 2923.
69 Lee PP, Stanton AR, Schumacher AE, et al. Osteoarthritis of the temporomandibular joint and increase of the horizontal condylar angle: a longitudinal study[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2019, 127(4): 339-350.
70 Alfaleh W. Relationship between horizontal condylar angle and radiographically detectable morphological changes of the condyle in asymptomatic and symptomatic patients with TMD[J]. Saudi Dent J, 2021, 33(8): 1154-1159.
71 Pamukcu U, Tetik H, Peker I, et al. Does the horizontal condylar angle have a relationship to temporomandibular joint osteoarthritis and condylar position? A cone-beam computed tomography study[J]. Folia Morphol (Warsz), 2022, 81(3): 723-731.
72 Lobo F, Tolentino ES, Iwaki LCV, et al. Imaginology tridimensional study of temporomandibular joint osseous components according to sagittal skeletal relationship, sex, and age[J]. J Craniofac Surg, 2019, 30(5): 1462-1465.
73 Moscagiuri F, Caroccia F, Lopes C, et al. Evaluation of articular eminence inclination in normo-divergent subjects with different skeletal classes through CBCT[J]. Int J Environ Res Public Health, 2021, 18(11): 5992.
74 Yasa Y, Akgül HM. Comparative cone-beam computed tomography evaluation of the osseous morphology of the temporomandibular joint in temporomandibular dysfunction patients and asymptomatic individuals[J]. Oral Radiol, 2018, 34(1): 31-39.
75 Serindere G, Aktuna Belgin C. MRI investigation of TMJ disc and articular eminence morphology in patients with disc displacement[J]. J Stomatol Oral Ma-xillofac Surg, 2021, 122(1): 3-6.
76 Cohen A, Sela MC, Shooraki N, et al. The influence of articular eminence morphology on temporomandibular joint anterior dislocations[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2021, 131(1): 9-15.
77 王兰如, 李洪发, 李婵. 成人骨性Ⅱ类高角颞下颌关节骨关节病关节结构的CBCT分析[J]. 天津医科大学学报, 2018, 24(2): 170-174.
Wang LR, Li HF, Li C. CBCT study on temporomandibular joint structure of temporomandibular joint osteoarthritis in adult high-angle Class Ⅱ malocclusion[J]. J Tianjin Med Univ, 2018, 24(2): 170-174.
78 Calle AJM, Ogawa CM, Martins JS, et al. Temporomandibular joint in juvenile idiopathic arthritis: magnetic resonance imaging measurements and their correlation with imaging findings[J]. Oral Radiol, 2022, 38(4): 459-467.
79 Oruba Z, Malisz P, Sendek J, et al. Flattening of the articular eminence is associated with the loss of occlusal support: radiological study[J]. Aust Dent J, 2020, 65(1): 53-57.
80 Iwasaki LR, Crosby MJ, Marx DB, et al. Human temporomandibular joint eminence shape and load minimization[J]. J Dent Res, 2010, 89(7): 722-727.
81 Fan XC, Ma LS, Chen L, et al. Temporomandibular joint osseous morphology of Class Ⅰ and class Ⅱmalocclusions in the normal skeletal pattern: a cone-beam computed tomography study[J]. Diagnostics (Basel), 2021, 11(3): 541.
82 Celebi AA, Cron R, Stoll M, et al. Comparison of the condyle-fossa relationship and resorption between patients with and without Juvenile Idiopathic Arthritis (JIA) [J]. J Oral Maxillofac Surg, 2022, 80(3): 422-430.
83 Sfondrini MF, Bolognesi L, Bosco M, et al. Skeletal divergence and condylar asymmetry in patients with temporomandibular disorders (TMD): a retrospective study[J]. Biomed Res Int, 2021, 2021: 8042910.
84 Iwasaki LR, Liu Y, Liu H, et al. Jaw mechanics in dolichofacial and brachyfacial phenotypes: a longitudinal cephalometric-based study[J]. Orthod Craniofac Res, 2017, 20(): 145-150.
85 Shu JH, Xiong X, Chong DY, et al. The relations between the stress in temporomandibular joints and the deviated distances for mandibular asymmetric patients[J]. Proc Inst Mech Eng H, 2021, 235(1): 109-116.
86 Ueki K, Nakagawa K, Takatsuka S, et al. Comparison of the stress direction on the TMJ in patients with Class Ⅰ, Ⅱ, and Ⅲ skeletal relationships[J]. Orthod Craniofac Res, 2008, 11(1): 43-50.
87 Kurusu A, Horiuchi M, Soma K. Relationship between occlusal force and mandibular condyle morphology. Evaluated by limited cone-beam computed tomography[J]. Angle Orthod, 2009, 79(6): 1063-1069.
88 Shi Z, Lv J, Xiaoyu L, et al. Condylar degradation from decreased occlusal loading following masticatory muscle atrophy[J]. Biomed Res Int, 2018, 2018: 6947612.
89 Lim MJ, Lee JY. Computed tomographic study of the patterns of oesteoarthritic change which occur on the mandibular condyle[J]. J Craniomaxillofac Surg, 2014, 42(8): 1897-1902.
90 Cevidanes LH, Gomes LR, Jung BT, et al. 3D superimposition and understanding temporomandibular joint arthritis[J]. Orthod Craniofac Res, 2015, 18(1): 18-28.
91 Tanaka E, Tanaka M, Watanabe M, et al. Influences of occlusal and skeletal discrepancies on biomecha-nical environment in the TMJ during maximum cle-nching: an analytic approach with the finite element method[J]. J Oral Rehabil, 2001, 28(9): 888-894.
92 Schröder A, Käppler P, Nazet U, et al. Effects of compressive and tensile strain on macrophages du-ring simulated orthodontic tooth movement[J]. Mediators Inflamm, 2020, 2020: 2814015.
93 刘洋, 尹德强. 关于颌位调整方法的思考和改进[J]. 国际口腔医学杂志, 2023, 50(5): 499-505.
Liu Y, Yin DQ. Introducing a novel digital articulation workflow with high precision[J]. Int J Stomatol, 2023, 50(5): 499-505.
94 Kato C, Ono T. Anterior open bite due to temporomandibular joint osteoarthrosis with muscle dysfunction treated with temporary anchorage devices[J]. Am J Orthod Dentofacial Orthop, 2018, 154(6): 848-859.
95 Arai C, Choi JW, Nakaoka K, et al. Management of open bite that developed during treatment for internal derangement and osteoarthritis of the temporomandibular joint[J]. Korean J Orthod, 2015, 45(3): 136-145.
96 Kurt H, Oztaş E, Gençel B, et al. An adult case of temporomandibular joint osteoarthritis treated with splint therapy and the subsequent orthodontic occlusal reconstruction[J]. Contemp Clin Dent, 2011, 2(4): 364-367.
97 Lei J, Liu MQ, Yap AUJ, et al. Condylar subchondral formation of cortical bone in adolescents and young adults[J]. Br J Oral Maxillofac Surg, 2013, 51(1): 63-68.
[1] Jingwen Han,Lei Wang,Shiqi Ren,Hongyu Wang,Yingyi Huang,Jiamin Li,Yan Zheng. Correlation between morphological characteristics of the temporomandibular joint and three-dimensional mandi-bular growth in adolescents [J]. Int J Stomatol, 2024, 51(4): 456-466.
[2] Qing Xue,Huichuan Qi,Min Hu. Research progress of primary cilia in bone remodelling and reconstruction of temporomandibular joint cartilage under mechanical stress [J]. Int J Stomatol, 2024, 51(2): 201-207.
[3] Xu Shukui,Zhang Shan,Xie Xinyu,Ma Wensheng.. Progress in research into the long-term stability of maxillary protraction therapy in skeletal classmalocclusion [J]. Int J Stomatol, 2023, 50(6): 646-652.
[4] Wang Luodan,Fan Hong. Morphological characteristics of sella turcica and its relationship with malocclusion [J]. Int J Stomatol, 2023, 50(6): 653-660.
[5] Yang Dongye,Zhu Ping,Wu Shuyi. The influencing factors and clinical significance of tongue position [J]. Int J Stomatol, 2023, 50(6): 723-728.
[6] Liu Panming,Li Zhengze,Li Junhe,Cui Shuxia.. Cone beam computed tomography study of maxillary sinus volume and oropharyngeal airway volume with diffe-rent vertical skeletal faces in adult skeletal Class Ⅱ patients [J]. Int J Stomatol, 2023, 50(5): 528-537.
[7] Zhao Zhihe.. Difficulty assessment of invisible orthodontic treatment based on treatment plan and tooth movement pattern [J]. Int J Stomatol, 2022, 49(4): 373-379.
[8] He Hong.. Clinical diagnosis and strategies for early orthodontic treatment of Class Ⅲ malocclusion with tonsillar hypertrophy in children [J]. Int J Stomatol, 2022, 49(3): 249-254.
[9] Han Jingwen,Ren Shiqi,Liu Xingyu,Lang Xin,Chu Mengshi,Waseem Saleh Abdo Kaid Algumaei,Zheng Yan. Features of condyles of adult patients with different vertical and sagittal skeletal facial types [J]. Int J Stomatol, 2022, 49(2): 153-162.
[10] Zhang Zhe,Liu Jin,Wang Weihong,Chen Zhiqiang,Yang Chun,Liu Li. Calcium pyrophosphate deposition disease complicated by temporomandibular joint dislocation [J]. Int J Stomatol, 2021, 48(6): 664-667.
[11] Zhang Shizhen,Lai Wenli. Research progress on maxillary protraction methods and auxiliary maxillary expansion for skeletal Class Ⅲ malocclusion [J]. Int J Stomatol, 2021, 48(3): 354-361.
[12] Yin Xiaoli,Liu Yang,Wang Jun. Internal structural changes of the temporomandibular joint associated with mandibular lateral displacement [J]. Int J Stomatol, 2020, 47(5): 567-573.
[13] Lin Yangyang,Hou Min. Effect of bilateral sagittal split ramus osteotomy operation on the displacement of proximal segment of mandible [J]. Int J Stomatol, 2019, 46(6): 718-723.
[14] Chen Yu,Jiang Huan,Liu Nan,Lu Chenmeng,Tang Zhongyuan,Han Ruyu,Hu Min. Effects of orthodontic treatment on changes in upper airway and peripheral structure in patients with skeletal Class Ⅱ malocclusion [J]. Int J Stomatol, 2019, 46(5): 578-584.
[15] Yanli Liu,Wei Zhao,Biying Zhang,Xiaoli An. Research progress on maxillary protraction with skeletal anchorage in growing patients with Class Ⅲ malocclusion [J]. Inter J Stomatol, 2019, 46(1): 112-118.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!