Int J Stomatol ›› 2024, Vol. 51 ›› Issue (6): 699-705.doi: 10.7518/gjkq.2024101

• Orthodontics • Previous Articles    

Progress of the research on four promising biopharmaceuticals for intervening in orthodontic recurrence

Man Liu1(),Yao Meng2(),Mao Niu1   

  1. 1.School of Medical Technology and Nursing, Shenzhen Polytechnic University, Shenzhen 518048, China
    2.Dept. of Orthodontics, Shenzhen Children’s Hospital, Shenzhen 518000, China
  • Received:2024-04-15 Revised:2024-09-18 Online:2024-11-01 Published:2024-11-04
  • Contact: Yao Meng E-mail:liumandentist@126.com;57397527@qq.com
  • Supported by:
    Guangdong Provincial Department of Education’s Characteristic Innovation Project for Ordinary Universities(2019GKTSCX091);Free Exploration Project of Shenzhen Science and Technology Innovation Committee(JCYJ20180228164957104);Shenzhen Science and Technology Innovation Committee University Stability Support Pro-ject([2021]0877)

Abstract:

Orthodontic relapse remains a prominent focus in orthodontic research owing to its clinical importance. Current insights suggest that the physiological similarity between orthodontic tooth movement and subsequent relapse warrants the exploration of biochemical agents targeting alveolar bone remodeling processes. Such agents, which can modulate the rate of orthodontic tooth movement, hold promise for regulating orthodontic relapse. The investigation of interventions for orthodontic relapse, primarily through local and systemic drug administration, is predominantly in the in vitro experimental stage. Notably, in animal studies, certain biopharmaceuticals have emerged as pivotal avenues of research due to their noninvasive nature, minimal side effects, and facile administration. This review synthesizes the osteogenic mechanisms and foundational research concerning four classes of biological drugs implicated in postorthodontic relapse: psoralen, phytoestrogenic isoflavone, lactoferrin, and the estrogen receptor modulator raloxifene.

Key words: orthodontic tooth movement, relapse, biomedical drugs, traditional Chinese medicine

CLC Number: 

  • R783.5

TrendMD: 

Fig 1

The research mechanism of regulating bone homeostasis and promoting bone formation by using Fructus Psorale, Epiflavones, Lactoferrin, and Raloxifene"

1 Rosyida NF, Ana ID, Ali Alhasyimi A. The use of polymers to enhance post-orthodontic tooth stability[J]. Polymers, 2022, 15(1): 103.
2 Alassiry AM. Orthodontic retainers: a contemporary overview[J]. J Contemp Dent Pract, 2019, 20(7): 857-862.
3 Shah SS, Nankar MY, Bendgude VD, et al. Orofacial myofunctional therapy in tongue thrust habit: a narrative review[J]. Int J Clin Pediatr Dent, 2021, 14(2): 298-303.
4 孟耀, 刘曼, 邓倩楠. 正畸应力作用下牙龈肌成纤维细胞表达的初步研究[J]. 华西口腔医学杂志, 2019, 37(5): 537-540.
Meng Y, Liu M, Deng QN. Expression of myofibroblast in gingival after orthodontic loading[J]. West China J Stomatol, 2019, 37(5): 537-540.
5 Millett D. The rationale for orthodontic retention: piecing together the jigsaw[J]. Br Dent J, 2021, 230(11): 739-749.
6 Franzen TJ, Monjo M, Rubert M, et al. Expression of bone markers and micro-CT analysis of alveolar bone during orthodontic relapse[J]. Orthod Craniofac Res, 2014, 17(4): 249-258.
7 Kaklamanos EG, Makrygiannakis MA, Athanasiou AE. Could medications and biologic factors affect post-orthodontic tooth movement changes? A systematic review of animal studies[J]. Orthod Craniofac Res, 2021, 24(1): 39-51.
8 Chauhan N, Kumar M, Chaurasia S, et al. A comprehensive review on drug therapies and nanomaterials used in orthodontic treatment[J]. Curr Pharm Des, 2023, 29(39): 3154-3165.
9 鲁亚奇, 张晓, 王金金, 等. 补骨脂化学成分及药理作用研究进展[J]. 中国实验方剂学杂志, 2019, 25(3): 180-189.
Lu YQ, Zhang X, Wang JJ, et al. Research progress on chemical constituents and pharmacological actions of psoralea fructus[J]. Chin J Exp Tradit Med Formulae, 2019, 25(3): 180-189.
10 Zhang R, Shi WM, Li LF, et al. Biological activity and health promoting effects of psoralidin[J]. Phar-mazie, 2019, 74(2): 67-72.
11 Sharifi-Rad J, Kamiloglu S, Yeskaliyeva B, et al. Pharmacological activities of psoralidin: a comprehensive review of the molecular mechanisms of action[J]. Front Pharmacol, 2020, 11: 571459.
12 Yang JL, Wen LR, Jiang YM, et al. Natural estrogen receptor modulators and their heterologous biosynthesis[J]. Trends Endocrinol Metab, 2019, 30(1): 66-76.
13 Chen LL, Chen SG, Sun P, et al. Psoralea corylifolia L: a comprehensive review of its botany, traditional uses, phytochemistry, pharmacology, toxicology, quality control and pharmacokinetics[J]. Chin Med, 2023, 18(1): 4.
14 王剑, 李想, 张宇, 等. 异补骨脂素促进大鼠骨髓间充质干细胞向骨细胞成分化并抑制其向脂肪细胞分化[J]. 内蒙古医学杂志, 2021, 53(3): 265-266, 271.
Wang J, Li X, Zhang Y, et al. Isopsoralen promotes the differentiation of rat bone marrow mesenchymal stem cells into osteoblasts and inhibits their differentiation into osteoblasts[J]. Inn Mong Med J, 2021, 53(3): 265-266, 271.
15 Ge LN, Cui YZ, Cheng K, et al. Isopsoralen enhanced osteogenesis by targeting AhR/ERα[J]. Mole-cules, 2018, 23(10): 2600.
16 刘小灿, 王旭霞, 吴晓晓, 等. 补骨脂对大鼠正畸后稳定性的影响[J]. 上海口腔医学, 2019, 28(5): 455-459.
Liu XC, Wang XX, Wu XX, et al. Effect of psoralen on the stability after orthodontic tooth movement in rats[J]. Shanghai J Stomatol, 2019, 28(5): 455-459.
17 吴晓晓. 补骨脂素对大鼠正畸牙移动后复发的影响[D]. 济南: 山东大学, 2017.
Wu XX. Effect of psoralen on the recurrence of ortho-dontic tooth movement in rats[D]. Jinan: Shandong University, 2017.
18 王军, 王剑, 鲁敏, 等. 异补骨脂素通过PPAR-γ-Axin2-Wnt信号通路调节对大鼠骨代谢的影响[J]. 世界中医药, 2021, 16(9): 1413-1416.
Wang J, Wang J, Lu M, et al. Effects of isopsoralen on bone metabolism in rats via PPAR gamma-Axin 2-Wnt signal regulation[J]. World Chin Med, 2021, 16(9): 1413-1416.
19 高子茏, 李婷, 吕政, 等. 补骨脂素联合转化生长因子β1诱导骨髓间充质干细胞向软骨细胞的分化[J]. 中国组织工程研究, 2022, 26(30): 4884-4888.
Gao ZL, Li T, Lü Z, et al. Psoralen combined with transforming growth factor beta 1 induces the differentiation of bone marrow mesenchymal stem cells into chondrocytes[J]. Chin J Tissue Eng Res, 2022, 26(30): 4884-4888.
20 Chai LJ, Zhou K, Wang SX, et al. Psoralen and bakuchiol ameliorate M-CSF plus RANKL-induced osteoclast differentiation and bone resorption via inhibition of AKT and AP-1 pathways in vitro [J]. Cell Physiol Biochem, 2018, 48(5): 2123-2133.
21 Patra S, Gorai S, Pal S, et al. A review on phytoestrogens: current status and future direction[J]. Phytother Res, 2023, 37(7): 3097-3120.
22 代书林, 王旭霞, 乜福娇, 等. 异普黄酮对大鼠正畸牙复发过程中牙周组织改建的影响[J]. 上海口腔医学, 2021, 30(1): 23-27.
Dai SL, Wang XX, Nie FJ, et al. Effect of ipriflavone on reconstruction of periodontal tissues during recurrence of orthodontic teeth in rats[J]. Shanghai J Stomatol, 2021, 30(1): 23-27.
23 Gao AG, Zhou YC, Hu ZJ, et al. Ipriflavone promotes osteogenesis of MSCs derived from osteoporotic rats[J]. Eur Rev Med Pharmacol Sci, 2018, 22(14): 4669-4676.
24 Han YY, Wang XX, Ma D, et al. Ipriflavone promotes proliferation and osteogenic differentiation of periodontal ligament cells by activating GPR30/PI3K/AKT signaling pathway[J]. Drug Des Devel Ther, 2018, 12: 137-148.
25 Di Naro E, Loverro M, Converti I, et al. The effect of menopause hypoestrogenism on osteogenic differentiation of periodontal ligament cells (PDLC) and stem cells (PDLCs): a systematic review[J]. Healthcare, 2021, 9(5): 572.
26 Ming LG, Chen KM, Xian CJ. Functions and action mechanisms of flavonoids genistein and icariin in regulating bone remodeling[J]. J Cell Physiol, 2013, 228(3): 513-521.
27 Casarrubios L, Gómez-Cerezo N, Feito MJ, et al. Ipriflavone-loaded mesoporous nanospheres with potential applications for periodontal treatment[J]. Nanomaterials (Basel), 2020, 10(12): 2573.
28 Chen Y, Li J, Shi J, et al. Ipriflavone suppresses NLRP3 inflammasome activation in host response to biomaterials and promotes early bone healing[J]. J Clin Periodontol, 2022, 49(8): 814-827.
29 Superti F. Lactoferrin from bovine milk: a protective companion for life[J]. Nutrients, 2020, 12(9): 2562.
30 纪颖, 艾连中, 邢明霞, 等. 基于牛乳铁蛋白的生产技术创新及应用研究进展[J]. 食品与发酵工业, 2022, 48(15): 332-340.
Ji Y, Ai LZ, Xing MX, et al. Advances on bovine lactoferrin-based technical innovation and application[J]. Food Ferment Ind, 2022, 48(15): 332-340.
31 Hao LY, Shan Q, Wei JY, et al. Lactoferrin: major physiological functions and applications[J]. Curr Pro-tein Pept Sci, 2019, 20(2): 139-144.
32 Wang B, Timilsena YP, Blanch E, et al. Lactoferrin: structure, function, denaturation and digestion[J]. Crit Rev Food Sci Nutr, 2019, 59(4): 580-596.
33 Zhang JL, Han X, Shan YJ, et al. Effect of bovine lactoferrin and human lactoferrin on the proliferative activity of the osteoblast cell line MC3T3-E1 in vitro [J]. J Dairy Sci, 2018, 101(3): 1827-1833.
34 Liu M, Fan FJ, Shi PJ, et al. Lactoferrin promotes MC3T3-E1 osteoblast cells proliferation via MAPK signaling pathways[J]. Int J Biol Macromol, 2018, 107(Pt A): 137-143.
35 Icriverzi M, Dinca V, Moisei M, et al. Lactoferrin in bone tissue regeneration[J]. Curr Med Chem, 2020, 27(6): 838-853.
36 Li QL, Zhao J, Hu WP, et al. Effects of recombinant human lactoferrin on osteoblast growth and bone status in piglets[J]. Anim Biotechnol, 2018, 29(2): 90-99.
37 Xu Y, Zhao TY, Ren HW, et al. Urinary metabolic profiling via LC-MS/MS reveals impact of bovine lactoferrin on bone formation in growing SD rats[J]. Nutrients, 2020, 12(4): 1116.
38 张宏宏, 卢海丽, 陈媛, 等. 乳铁蛋白对正畸复发移动过程中牙周改建的影响[J]. 广西医科大学学报, 2021, 38(1): 23-27.
Zhang HH, Lu HL, Chen Y, et al. Effect of lactoferrin on the periodontal remodeling during orthodontic recurrence and movement[J]. J Guangxi Med Univ, 2021, 38(1): 23-27.
39 Mondockova V, Adamkovicova M, Lukacova M, et al. The estrogen receptor 1 gene affects bone mineral density and osteoporosis treatment efficiency in Slovak postmenopausal women[J]. BMC Med Genet, 2018, 19(1): 174.
40 Koth VS, Salum FG, de Figueiredo MAZ, et al. Morphological and immunohistochemical features of tooth extraction sites in rats treated with alendronate, raloxifene, or strontium ranelate[J]. Clin Oral Investig, 2021, 25(5): 2705-2716.
41 Rolland A, Sorel O, Gebeile-Chauty S. Development of professional recommendations on orthodontic retention: short version[J]. Orthod Fr, 2023, 94(1): 55-68.
42 Ansari MD, Shafi S, Pandit J, et al. Raloxifene encapsulated spanlastic nanogel for the prevention of bone fracture risk via transdermal administration: pharmacokinetic and efficacy study in animal model[J]. Drug Deliv Transl Res, 2024, 14(6): 1635-1647.
43 Khamees AM, Al Groosh DH. Effect of vitamin D deficiency on postorthodontic relapse: an animal study[J]. Clin Exp Dent Res, 2023, 9(4): 701-710.
[1] Qing Xue,Huichuan Qi,Min Hu. Research progress of primary cilia in bone remodelling and reconstruction of temporomandibular joint cartilage under mechanical stress [J]. Int J Stomatol, 2024, 51(2): 201-207.
[2] Wang Lei,Ye Ling,Wang Chenglin.. Management and prevention strategies for complications of internal bleaching [J]. Int J Stomatol, 2023, 50(3): 359-365.
[3] Yin Yuanyuan,Ma Huayu,Li Xinyi,Xu Jingchen,Liu Ting,Chen Song,He Shushu. Expression of autophagy related genes in mice periodontal tissue during orthodontic tooth movement [J]. Int J Stomatol, 2020, 47(6): 627-634.
[4] Zhao Yujie,Guan Xiaoyan,Li Xiaolan,Chen Qijun,Wang Qian,Liu Jianguo. Research progress on macrophage polarization involved in the regulation of orthodontic tooth movement [J]. Int J Stomatol, 2020, 47(4): 478-483.
[5] Ya Yang,Peng Chen,Hongwei Dai,Lin Zhang. Change in expression of transformation growth factor-β/Smad signalling pathway-related proteins in epithelial rests of Malassez during orthodontic tooth movement in rats [J]. Int J Stomatol, 2019, 46(3): 270-276.
[6] Yan Ziqi1, He Wulin2, Zou Shujuan1.. Research progress on effect of low-level laser therapy during orthodontic tooth movement [J]. Inter J Stomatol, 2014, 41(2): 169-171.
[7] Bao Xingfu, Hu Min.. Research progress on mechanisms and regulations of bone resorption in orthodontic tooth movement [J]. Inter J Stomatol, 2012, 39(2): 187-189.
[8] Peng Peng, Cai Ping.. Effects of growth factors on the periodontal tissue remodeling during orthodontic tooth movement [J]. Inter J Stomatol, 2012, 39(2): 252-256.
[9] XU Xu-jie, WU Li-ping. The influence of L-arginine and NG-nitro-L-arginine methyl ester synthase express [J]. Inter J Stomatol, 2009, 36(4): 379-382.
[10] HE Qi, CHEN Dan-peng, PAN Jin-song. The role of core binding factor α1 in periodontal tissue during the orthodontic [J]. Inter J Stomatol, 2009, 36(3): 303-306.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!