Int J Stomatol ›› 2024, Vol. 51 ›› Issue (5): 585-595.doi: 10.7518/gjkq.2024084
• Implantology • Previous Articles Next Articles
Zheng Zhang1(),Feng Yang1,2,Jiafeng Li2(),Kun Cao2
CLC Number:
1 | Maleki Dizaj S, Shokrgozar H, Yazdani J, et al. Antibacterial effects of curcumin nanocrystals against Porphyromonas gingivalis isolated from patients with implant failure[J]. Clin Pract, 2022, 12(5): 809-817. |
2 | Song L, Jiang JM, Li J, et al. The characteristics of microbiome and cytokines in healthy implants and peri-implantitis of the same individuals[J]. J Clin Med, 2022, 11(19): 5817. |
3 | Matica MA, Aachmann FL, Tøndervik A, et al. Chitosan as a wound dressing starting material: antimicrobial properties and mode of action[J]. Int J Mol Sci, 2019, 20(23): 5889. |
4 | Sharifianjazi F, Khaksar S, Esmaeilkhanian A, et al. Advancements in fabrication and application of chitosan composites in implants and dentistry: a review[J]. Biomolecules, 2022, 12(2): 155. |
5 | 范华杨, 尹一佳, 王铮, 等. 钛种植体表面壳聚糖涂层的作用与优势[J]. 中国组织工程研究, 2018, 22(34): 5553-5558. |
Fan HY, Yin YJ, Wang Z, et al. Chitosan coatings for titanium implants: applications and strengths[J]. Chin J Tissue Eng Res, 2018, 22(34): 5553-5558. | |
6 | Lin RT, Wang ZR, Li ZH, et al. A two-phase and long-lasting multi-antibacterial coating enables titanium biomaterials to prevent implants-related infections[J]. Mater Today Bio, 2022, 15: 100330. |
7 | Zarghami V, Ghorbani M, Bagheri KP, et al. Impro-ving bactericidal performance of implant composite coatings by synergism between Melittin and tetracycline[J]. J Mater Sci Mater Med, 2022, 33(6): 46. |
8 | López-Valverde N, López-Valverde A, Ramírez JM. Systematic review of effectiveness of chitosan as a biofunctionalizer of titanium implants[J]. Biology (Basel), 2021, 10(2): 102. |
9 | Thambiliyagodage C, Jayanetti M, Mendis A, et al. Recent advances in chitosan-based applications-a review[J]. Materials, 2023, 16(5): 2073. |
10 | Imazato S, Torii M, Tsuchitani Y, et al. Incorporation of bacterial inhibitor into resin composite[J]. J Dent Res, 1994, 73(8): 1437-1443. |
11 | Melo MA, Wu JL, Weir MD, et al. Novel antibacterial orthodontic cement containing quaternary ammonium monomer dimethylaminododecyl methacrylate[J]. J Dent, 2014, 42(9): 1193-1201. |
12 | Liu D, Peng X, Wang SP, et al. A novel antibacterial resin-based root canal sealer modified by dimethylaminododecyl methacrylate[J]. Sci Rep, 2019, 9(1): 10632. |
13 | Zhang KK, Ren B, Zhou XD, et al. Effect of antimicrobial denture base resin on multi-species biofilm formation[J]. Int J Mol Sci, 2016, 17(7): 1033. |
14 | de Moraes Porto ICC, de Lisieux Guedes Ferreira Lôbo T, Rodrigues RF, et al. Insight into the deve-lopment of versatile dentin bonding agents to increase the durability of the bonding interface[J]. Front Dent Med, 2023, 4: 1127368. |
15 | Zhou YJ, Wang SP, Zhou XD, et al. Short-time antibacterial effects of dimethylaminododecyl methacrylate on oral multispecies biofilm in vitro [J]. Biomed Res Int, 2019, 2019: 6393470. |
16 | Moussa H, Jones MM, Huo NB, et al. Biocompatibility, mechanical, and bonding properties of a dental adhesive modified with antibacterial monomer and cross-linker[J]. Clin Oral Investig, 2021, 25(5): 2877-2889. |
17 | Bhadila G, Wang XH, Weir MD, et al. Low-shrin-kage-stress nanocomposite: an insight into shrinkage stress, antibacterial, and ion release properties[J]. J Biomed Mater Res B Appl Biomater, 2021, 109(8): 1124-1134. |
18 | Zhou W, Peng X, Ma Y, et al. Two-staged time-dependent materials for the prevention of implant-related infections[J]. Acta Biomater, 2020, 101: 128-140. |
19 | Chen H, Zhou YJ, Zhou XD, et al. Dimethylaminododecyl methacrylate inhibits Candida albicans and oropharyngeal candidiasis in a pH-dependent manner[J]. Appl Microbiol Biotechnol, 2020, 104(8): 3585-3595. |
20 | Jia Y, Lu H, Zhu L. Molecular mechanism of anti-biotic resistance induced by mono- and twin-chained quaternary ammonium compounds[J]. Sci Total Environ, 2022, 832: 155090. |
21 | Nordholt N, O’Hara K, Resch-Genger U, et al. A fluorescently labelled quaternary ammonium compound (NBD-DDA) to study resistance mechanisms in bacteria[J]. Front Microbiol, 2022, 13: 1023326. |
22 | De Silva M, Ning C, Ghanbar S, et al. Evidence that a novel quaternary compound and its organic N-chloramine derivative do not select for resistant mutants of Pseudomonas aeruginosa [J]. J Hosp Infect, 2015, 91(1): 53-58. |
23 | Dong A, Wang YJ, Gao YY, et al. Chemical insights into antibacterial N-halamines[J]. Chem Rev, 2017, 117(6): 4806-4862. |
24 | Tao BL, Shen XK, Yuan Z, et al. N-halamine-based multilayers on titanium substrates for antibacterial application[J]. Colloids Surf B Biointerfaces, 2018, 170: 382-392. |
25 | Wu SY, Xu JM, Zou LY, et al. Long-lasting renewable antibacterial porous polymeric coatings enable titanium biomaterials to prevent and treat peri-implant infection[J]. Nat Commun, 2021, 12(1): 3303. |
26 | Jamesh MI. Improved in vitro and in vivo corrosion resistance of Mg and Mg alloys by plasma ion implantation and deposition techniques-a mini-review[J]. Lubricants, 2022, 10(10): 255. |
27 | Akhtar M, Uzair SA, Rizwan M, et al. The improvement in surface properties of metallic implant via magnetron sputtering: recent progress and remai-ning challenges[J]. Front Mater, 2022, 8: 747169. |
28 | Pesode PA, Barve SB. Recent advances on the antibacterial coating on titanium implant by micro-Arc oxidation process[J]. Mater Today Proc, 2021, 47: 5652-5662. |
29 | Esteves GM, Esteves J, Resende M, et al. Antimicrobial and antibiofilm coating of dental implants-past and new perspectives[J]. Antibiotics, 2022, 11(2): 235. |
30 | Han W, Fang SB, Zhong Q, et al. Influence of dental implant surface modifications on osseointegration and biofilm attachment[J]. Coatings, 2022, 12(11): 1654. |
31 | Durdu S, Yalçin E, Altinkök A, et al. Characterization and investigation of electrochemical and biolo-gical properties of antibacterial silver nanoparticle-deposited TiO2 nanotube array surfaces[J]. Sci Rep, 2023, 13(1): 4699. |
32 | Shahed CA, Ahmad F, Günister E, et al. Antibacte-rial mechanism with consequent cytotoxicity of diffe-rent reinforcements in biodegradable magnesium and zinc alloys: a review[J]. J Magnes Alloys, 2023, 11(9): 3038-3058. |
33 | Zhang XJ, Huang Y, Wang BB, et al. A functiona-lized Sm/Sr doped TiO2 nanotube array on titanium implant enables exceptional bone-implant integration and also self-antibacterial activity[J]. Ceram Int, 2020, 46(10): 14796-14807. |
34 | Zhang XJ, Wang BB, Ma LF, et al. Chemical stability, antibacterial and osteogenic activities study of strontium-silver co-substituted fluorohydroxyapatite nanopillars: a potential multifunctional biological coating[J]. Ceram Int, 2020, 46(17): 27758-27773. |
35 | Zhao YB, Shi LQ, Ji XJ, et al. Corrosion resistance and antibacterial properties of polysiloxane modified layer-by-layer assembled self-healing coating on magnesium alloy[J]. J Colloid Interface Sci, 2018, 526: 43-50. |
36 | Ganjali M, Mousavi S, Nikzamir S, et al. Effect of laser cladded Co-doped strontium fluorapatite na-nopowder coating on the antibacterial and cell attachment of Ti-6Al-4V implants for bone applications[J]. Mater Technol, 2022, 37(8): 829-841. |
37 | Togawa G, Takahashi M, Tada H, et al. Development of ternary Ti-Ag-Cu alloys with excellent mechanical properties and antibiofilm activity[J]. Materials, 2022, 15(24): 9011. |
38 | Chen Y, Dou JH, Yu HJ, et al. Degradable magnesium-based alloys for biomedical applications: the role of critical alloying elements[J]. J Biomater Appl, 2019, 33(10): 1348-1372. |
39 | Li RY, Zhang HY, Yao XH, et al. Regulation of TiO2 nanoarrays on titanium implants for enhanced osteogenic activity and immunomodulation[J]. J Mater Sci Technol, 2023, 150: 233-244. |
40 | Park J, Bauer S, von der Mark K, et al. Nanosize and vitality: TiO2 nanotube diameter directs cell fate[J]. Nano Lett, 2007, 7(6): 1686-1691. |
41 | Bandyopadhyay A, Shivaram A, Mitra I, et al. Electrically polarized TiO2 nanotubes on Ti implants to enhance early-stage osseointegration[J]. Acta Biomater, 2019, 96: 686-693. |
42 | Li T, Wang N, Chen S, et al. Antibacterial activity and cytocompatibility of an implant coating consis-ting of TiO2 nanotubes combined with a GL13K antimicrobial peptide[J]. Int J Nanomedicine, 2017, 12: 2995-3007. |
43 | Nowruzi F, Imani R, Faghihi S. Effect of electrochemical oxidation and drug loading on the antibacterial properties and cell biocompatibility of tita-nium substrates[J]. Sci Rep, 2022, 12: 8595. |
44 | Zhang GN, Zhang XY, Yang YQ, et al. Dual light-induced in situ antibacterial activities of biocompatible TiO2/MoS2PDA/RGD nanorod arrays on titanium[J]. Biomater Sci, 2020, 8(1): 391-404. |
45 | Ge X, Ren CZ, Ding YH, et al. Micro/nano-structured TiO2 surface with dual-functional antibacterial effects for biomedical applications[J]. Bioact Mater, 2019, 4: 346-357. |
46 | Qi L, Guo BH, Lu Q, et al. Preparation and photocatalytic and antibacterial activities of micro/nanostructured TiO2-based photocatalysts for application in orthopedic implants[J]. Front Mater, 2022, 9: 914-905. |
47 | Oh S, Brammer KS, Li YS, et al. Stem cell fate dictated solely by altered nanotube dimension[J]. Proc Natl Acad Sci U S A, 2009, 106(7): 2130-2135. |
48 | Bai L, Zhao Y, Chen PR, et al. Targeting early hea-ling phase with titania nanotube arrays on tunable diameters to accelerate bone regeneration and osseointegration[J]. Small, 2021, 17(4): e2006287. |
49 | Cao X, Wu KY, Wang CY, et al. Graphene oxide loaded on TiO2-nanotube-modified Ti regulates the behavior of human gingival fibroblasts[J]. Int J Mol Sci, 2022, 23(15): 8723. |
50 | Li F, Pan QY, Ling Y, et al. Gold-Titanium dioxide heterojunction for enhanced sonodynamic mediated biofilm eradication and peri-implant infection treatment[J]. Chem Eng J, 2023, 460: 141791. |
51 | Reznickova A, Nguyenova HY, Zaruba K, et al. Gra-fting of silver nanospheres and nanoplates onto plasma activated PET: effect of nanoparticle shape on antibacterial activity[J]. Vacuum, 2022, 203: 111268. |
52 | Sehar S, Naz I, Rehman A, et al. Shape-controlled synthesis of cerium oxide nanoparticles for efficient dye photodegradation and antibacterial activities[J]. Appl Organomet Chem, 2021, 35(1): e6069. |
53 | Raza MA, Kanwal Z, Rauf A, et al. Size- and shape-dependent antibacterial studies of silver nanoparticles synthesized by wet chemical routes[J]. Nanomaterials, 2016, 6(4): 74. |
54 | Pal S, Tak YK, Song JM. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli [J]. Appl Environ Microbiol, 2007, 73(6): 1712-1720. |
55 | Van Dong P, Ha CH, Binh LT, et al. Chemical synthesis and antibacterial activity of novel-shaped silver nanoparticles[J]. Int Nano Lett, 2012, 2(1): 9. |
56 | Kheiri S, Liu XY, Thompson M. Nanoparticles at biointerfaces: antibacterial activity and nanotoxico-logy[J]. Colloids Surf B Biointerfaces, 2019, 184: 110550. |
57 | Amor IB, Hemmami H, Laouini SE, et al. Biosynthesis MgO and ZnO nanoparticles using chitosan extracted from Pimelia Payraudi Latreille for antibacterial applications[J]. World J Microbiol Biotechnol, 2022, 39(1): 19. |
58 | Zhang XY, Li YX, Luo XB, et al. Enhancing antibacterial property of porous titanium surfaces with silver nanoparticles coatings via electron-beam eva-poration[J]. J Mater Sci Mater Med, 2022, 33(7): 57. |
59 | Pérez-Tanoira R, Fernández-Arias M, Potel C, et al. Silver nanoparticles produced by laser ablation and re-irradiation are effective preventing peri-implantitis multispecies biofilm formation[J]. Int J Mol Sci, 2022, 23(19): 12027. |
60 | Qing YA, Cheng L, Li RY, et al. Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies[J]. Int J Nanomedicine, 2018, 13: 3311-3327. |
61 | Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. |
62 | Palmieri V, Bugli F, Lauriola MC, et al. Bacteria meet graphene: modulation of graphene oxide na-nosheet interaction with human pathogens for effective antimicrobial therapy[J]. ACS Biomater Sci Eng, 2017, 3(4): 619-627. |
63 | Zhang XY, Lu SX, He DM, et al. Antibacterial pro-perty of graphene quantum dots-modified TiO2 nanorods on titanium dental implant[J]. Trans Nonferrous Met Soc China, 2023, 33(8): 2395-2405. |
64 | Jang W, Kim HS, Alam K, et al. Direct-deposited graphene oxide on dental implants for antimicrobial activities and osteogenesis[J]. Int J Nanomedicine, 2021, 16: 5745-5754. |
65 | Tan J, Li L, Li BY, et al. Titanium surfaces modified with graphene oxide/gelatin composite coatings for enhanced antibacterial properties and biological activities[J]. ACS Omega, 2022, 7(31): 27359-27368. |
66 | Cheng Q, Lu R, Wang X, et al. Antibacterial activity and cytocompatibility evaluation of the antimicro-bial peptide Nal-P-113-loaded graphene oxide coating on titanium[J]. Dent Mater J, 2022, 41(6): 905-915. |
67 | Chen F, Luo Y, Liu X, et al. 2D molybdenum sulfide-based materials for photo-excited antibacterial application[J]. Adv Healthc Mater, 2022, 11(13): e2200360. |
68 | Yu SP, Zhang Q, Hu ML, et al. Study on optimizing novel antimicrobial peptides with bifunctional acti-vity to prevent and treat peri-implant disease[J]. Antibiotics, 2022, 11(11): 1482. |
69 | Acosta S, Ibañez-Fonseca A, Aparicio C, et al. Antibiofilm coatings based on protein-engineered polymers and antimicrobial peptides for preventing implant-associated infections[J]. Biomater Sci, 2020, 8(10): 2866-2877. |
70 | Zhang YN, Zhang L, Li B, et al. Enhancement in sustained release of antimicrobial peptide from dual-diameter-structured TiO2 nanotubes for long-lasting antibacterial activity and cytocompatibility[J]. ACS Appl Mater Interfaces, 2017, 9(11): 9449-9461. |
71 | Zarghami V, Ghorbani M, Pooshang Bagheri K, et al. Prolongation of bactericidal efficiency of chitosan-Bioactive glass coating by drug controlled release[J]. Prog Org Coat, 2020, 139: 105440. |
72 | Fan XL, Hu M, Qin ZH, et al. Bactericidal and hemocompatible coating via the mixed-charged copolymer[J]. ACS Appl Mater Interfaces, 2018, 10(12): 10428-10436. |
[1] | Jiamin Li,Yuchen Li,Zhangjie Ge,Lingzi Liao,Xin Guo,Xiaolong Guo,Ping Zhou. Advancements in the study of antimicrobial peptides in the coating of oral titanium implants [J]. Int J Stomatol, 2024, 51(5): 572-584. |
[2] | Zhu Junjin,Wang Jian.. Advances in the loading methods of silver nanoparticles on the surface of titanium implants [J]. Int J Stomatol, 2021, 48(3): 334-340. |
[3] | Wang Huan,Liu Yang,Qi Mengchun,Li Jingyi,Liu Mengnan,Sun Hong. Research progress on the preparation of titanium-based implant surface coatings by micro-arc oxidation [J]. Int J Stomatol, 2020, 47(4): 439-444. |
[4] | Yuhao Liu,Quan Yuan,Shiwen Zhang. Recent research progress on the drug-loaded antibacterial coatings of titanium implants based on covalent grafting [J]. Inter J Stomatol, 2019, 46(2): 228-233. |
[5] | Mengqi Liu,Kuo Gai,Li Jiang. Research progress on oral implant materials with antimicrobial properties [J]. Inter J Stomatol, 2018, 45(5): 516-521. |
[6] | Xingying Qi,Guoying Zheng,Lei. Sui. Effects of titanium implant surface topographies on osteogenesis [J]. Inter J Stomatol, 2018, 45(5): 527-533. |
[7] | Zhao Fujian, Wang Zhenshi, Shi Lianshui. Research status of antibacterial coating on orthodontic brackets [J]. Inter J Stomatol, 2016, 43(2): 239-243. |
[8] | Du Qiao, Niu Guangliang. Surface roughening zirconia and modification [J]. Inter J Stomatol, 2015, 42(1): 97-101. |
[9] | Fan Jian, Zou Gengsen, Chen Jiang. Immune response of the body to nanomodified titanium implant surfaces [J]. Inter J Stomatol, 2014, 41(6): 691-693. |
[10] | Lin Xi, Zhou Lei. Research progress on surface characteristics of titanium implant [J]. Inter J Stomatol, 2014, 41(6): 677-680. |
[11] | Zhuang Xiumei, Deng Feilong.. Effect and mechanism of titanium with nanoscale surface modification for osseointegration [J]. Inter J Stomatol, 2014, 41(4): 427-430. |
[12] | Guo Jing, Gan Kang, Liu Hong.. Polyetheretherketone composite material and its surface-modified osteogenic efficiency [J]. Inter J Stomatol, 2014, 41(4): 436-439. |
[13] | Liu Yuanyuan1, Li Guo1, Ren Jiayin1, Zhao Shuping1, Nie Jing2, Wang Hu1.. The osseointegration research of the interface between bone and implant coating by nano-scale titanium thin film [J]. Inter J Stomatol, 2012, 39(3): 312-316. |
[14] | Yang Huochuan, Li Yan.. Research progress on antimicrobial effect of denture soft liner and maxillofacial prosthesis silicone rubber [J]. Inter J Stomatol, 2011, 38(5): 559-562. |
[15] | DU Jin-jin, WANG Dalin.. New development of surface modification of dental titanium and titanium alloy [J]. Inter J Stomatol, 2010, 37(6): 703-706. |
|