Int J Stomatol ›› 2026, Vol. 53 ›› Issue (1): 10-18.doi: 10.7518/gjkq.2026203
• Orthodontics • Previous Articles Next Articles
Xuanchen Su1,2(
),Yijia Dong1,Yuwen Shi1,Yali Liu1,2,3(
)
CLC Number:
| [1] | Li Y, Zhan Q, Bao M, et al. Biomechanical and biological responses of periodontium in orthodontic tooth movement: up-date in a new decade[J]. Int J Oral Sci, 2021, 13(1): 20. |
| [2] | Xiao B. Levering mechanically activated piezo chan-nels for potential pharmacological intervention[J]. Annu Rev Pharmacol Toxicol, 2020, 60: 195-218. |
| [3] | Li X, Han L, Nookaew I, et al. Stimulation of Piezo1 by mechanical signals promotes bone anabolism[J]. Elife, 2019, 8: e49631. |
| [4] | Sun W, Chi S, Li Y, et al. The mechanosensitive Piezo1 channel is required for bone formation[J]. Elife, 2019, 8: e47454. |
| [5] | Lin Y, Ren J, McGrath C. Mechanosensitive Piezo1 and Piezo2 ion channels in craniofacial development and dentistry: recent advances and prospects[J]. Front Physiol, 2022, 13: 1039714. |
| [6] | Shen Y, Pan Y, Guo S, et al. The roles of mechanosensitive ion channels and associated downstream MAPK signaling pathways in PDLC mechanotransduction[J]. Mol Med Rep, 2020, 21(5): 2113-2122. |
| [7] | Jin Y, Li J, Wang Y, et al. Functional role of mechanosensitive ion channel Piezo1 in human periodontal ligament cells[J]. Angle Orthod, 2015, 85(1): 87-94. |
| [8] | 张曼, 张苗苗, 李易, 等. 牙齿移动过程中Piezo1对压力侧牙周组织内IL-1β、IL-6及IL-17的影响[J]. 口腔医学研究, 2023, 39(2): 135-140. |
| Zhang M, Zhang MM, Li Y, et al. Effect of Piezol channel on expression of IL-1β, IL-6, and IL-17 in periodontal tissue of pressure side during tooth movement[J]. J Oral Sci Res, 2023, 39(2): 135-140. | |
| [9] | 王贺, 李易, 张曼, 等. 基于RANKL/OPG通路探讨GsMTx4对大鼠正畸牙齿移动过程中压力侧牙周组织改建的影响[J]. 口腔生物医学, 2022, 13(3): 169-174. |
| Wang H, Li Y, Zhang M, et al. Effect of GsMTx4 on periodontal tissue reconstruction at the pressure side during orthodontic tooth movement in rats through RANKL/OPG pathway[J]. Oral Biomed, 2022, 13(3): 169-174. | |
| [10] | Schröder A, Neher K, Krenmayr B, et al. Impact of PIEZO1-channel on inflammation and osteoclastogenesis mediated via periodontal ligament fibroblasts during mechanical loading[J]. Eur J Oral Sci, 2023, 131(1): e12913. |
| [11] | 张严匀, 李易, 王贺, 等. 大鼠牙齿移动过程中Piezo1对压力侧牙周组织中RIP3及MLKL的影响[J]. 口腔医学, 2022, 42(10): 883-888. |
| Zhang YY, Li Y, Wang H, et al. Effect of Piezo1 on RIP3 and MLKL in periodontal tissue of the pressure side during tooth movement in rats[J]. Stomatology, 2022, 42(10): 883-888. | |
| [12] | 陈思言, 季开心, 张敏杰, 等. 大鼠正畸牙移动过程中坏死性凋亡对牙周组织中IL-1β及IL-17的影响[J]. 口腔医学, 2021, 41(11): 977-982. |
| Chen SY, Ji KX, Zhang MJ, et al. Effect of necroptosis on IL-1β and IL-17 in periodontal membrane during orthodontic tooth movement in rats[J]. Stomatology, 2021, 41(11): 977-982. | |
| [13] | Jiang Y, Guan Y, Lan Y, et al. Mechanosensitive Piezo1 in periodontal ligament cells promotes alveolar bone remodeling during orthodontic tooth movement[J]. Front Physiol, 2021, 12: 767136. |
| [14] | 王林, 王熙, 季楠, 等. 机械激活性离子通道压电蛋白Piezo1通过Notch信号通路介导牙周膜干细胞成骨分化作用机制研究[J]. 华西口腔医学杂志, 2020, 38(6): 628-636. |
| Wang L, Wang X, Ji N, et al. Mechanisms of the mechanically activated ion channel Piezo1 protein in mediating osteogenic differentiation of periodontal ligament stem cells via the Notch signaling pathway[J]. West China J Stomatol, 2020, 38(6): 628-636. | |
| [15] | Wang L, You X, Lotinun S, et al. Mechanical sen-sing protein PIEZO1 regulates bone homeostasis via osteoblast-osteoclast crosstalk[J]. Nat Commun, 2020, 11(1): 282. |
| [16] | Yang Y, Dai Q, Gao X, et al. Occlusal force orchestrates alveolar bone homeostasis via Piezo1 in female mice[J]. J Bone Miner Res, 2024, 39(5): 580-594. |
| [17] | Chen Y, Yin Y, Luo M, et al Occlusal force maintains alveolar bone homeostasis via type H angiogenesis[J]. J Dent Res, 2023, 102(12): 1356-1365. |
| [18] | Zhang YY, Huang YP, Zhao HX, et al. Cementoge-nesis is inhibited under a mechanical static compressive force via Piezo1[J]. Angle Orthod, 2017, 87(4): 618-624. |
| [19] | Limberg MM, Wiebe D, Gray N, et al. Functional expression of TRPV1 in human peripheral blood basophils and its regulation in atopic dermatitis[J]. Allergy, 2024, 79(1): 225-228. |
| [20] | Strotmann R, Harteneck C, Nunnenmacher K, et al. OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity[J]. Nat Cell Biol, 2000, 2(10): 695-702. |
| [21] | Caterina MJ, Rosen TA, Tominaga M, et al. A capsai-cin-receptor homologue with a high threshold for noxious heat[J]. Nature, 1999, 398(6726): 436-441. |
| [22] | Son GY, Hong JH, Chang I, et al. Induction of IL-6 and IL-8 by activation of thermosensitive TRP channels in human PDL cells[J]. Arch Oral Biol, 2015, 60(4): 526-532. |
| [23] | Jin SS, He DQ, Wang Y, et al. Mechanical force modulates periodontal ligament stem cell characte-ristics during bone remodelling via TRPV4[J]. Cell Prolif, 2020, 53(10): e12912. |
| [24] | Guo R, Zhou Y, Long H, et al. Transient receptor potential Vanilloid 1-based gene therapy alleviates orthodontic pain in rats[J]. Int J Oral Sci, 2019, 11(1): 11. |
| [25] | Wang S, Kim M, Ali Z, et al. TRPV1 and TRPV1-expressing nociceptors mediate orofacial pain behaviors in a mouse model of orthodontic tooth movement[J]. Front Physiol, 2019, 10: 1353. |
| [26] | 方丹, 王芮, 乔虎. 小鼠杏仁中央核内TRPV1参与实验性正畸牙移动疼痛和焦虑的研究[J]. 口腔生物医学, 2023, 14(4): 224-228, 232. |
| Fang D, Wang R, Qiao H. Study of TRPV1 in the central nucleus of the amygdala participates in pain and anxiety of experimental orthodontic tooth movement in mice[J]. Oral Biomed, 2023, 14(4): 224-228, 232. | |
| [27] | Wang S, Ko CC, Chung MK. Nociceptor mechanisms underlying pain and bone remodeling via orthodontic forces: toward no pain, big gain[J]. Front Pain Res (Lausanne), 2024, 5: 1365194. |
| [28] | He LH, Liu M, He Y, et al. TRPV1 deletion impaired fracture healing and inhibited osteoclast and osteoblast differentiation[J]. Sci Rep, 2017, 7: 42385. |
| [29] | Takahashi N, Matsuda Y, Sato K, et al. Neuronal TRPV1 activation regulates alveolar bone resorption by suppressing osteoclastogenesis via CGRP[J]. Sci Rep, 2016, 6: 29294. |
| [30] | Mikhailov N, Leskinen J, Fagerlund I, et al. Mechanosensitive meningeal nociception via Piezo channels: implications for pulsatile pain in migraine[J]. Neuropharmacology, 2019, 149: 113-123. |
| [31] | Watanabe H, Vriens J, Prenen J, et al. Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels[J]. Nature, 2003, 424(6947): 434-438. |
| [32] | Ma H, Macdougall LJ, GonzalezRodriguez A, et al. Calcium signaling regulates valvular interstitial cell alignment and myofibroblast activation in fast-rela-xing boronate hydrogels[J]. Macromol Biosci, 2020, 20(12): e2000268. |
| [33] | Ji C, Wang Y, Wang Q, et al. TRPV4 regulates β1 integrin-mediated cell-matrix adhesions and collagen remodeling[J]. FASEB J, 2023, 37(6): e22946. |
| [34] | Alghamdi B, Jeon HH, Ni J, et al. Osteoimmunology in periodontitis and orthodontic tooth movement[J]. Curr Osteoporos Rep, 2023, 21(2): 128-146. |
| [35] | Nishimura H, Kawasaki M, Tsukamoto M, et al. Transient receptor potential vanilloid 1 and 4 double knockout leads to increased bone mass in mice[J]. Bone Rep, 2020, 12: 100268. |
| [36] | Corrigan MA, Johnson GP, Stavenschi E, et al. TRPV4-mediates oscillatory fluid shear mechanotransduction in mesenchymal stem cells in part via the primary cilium[J]. Sci Rep, 2018, 8(1): 3824. |
| [37] | Patel K, Smith NJ. Primary cilia, a-kinase anchoring proteins and constitutive activity at the orphan G protein-coupled receptor GPR161: a tale about a tail[J]. Br J Pharmacol, 2024, 181(14): 2182-2196. |
| [38] | Lian F, Li H, Ma Y, et al. Recent advances in primary cilia in bone metabolism[J]. Front Endocrinol (Lausanne), 2023, 14: 1259650. |
| [39] | Nishimura Y, Kasahara K, Shiromizu T, et al. Primary cilia as signaling hubs in health and disease[J]. Adv Sci (Weinh), 2018, 6(1): 1801138. |
| [40] | Tschaikner P, Enzler F, Torres-Quesada O, et al. Hedgehog and Gpr161: regulating cAMP signaling in the primary cilium[J]. Cells, 2020, 9(1): 118. |
| [41] | Johnson GP, Stavenschi E, Eichholz KF, et al. Mesenchymal stem cell mechanotransduction is cAMP dependent and regulated by adenylyl cyclase 6 and the primary cilium[J]. J Cell Sci, 2018, 131(21): jcs222737. |
| [42] | Lee MN, Song JH, Oh SH, et al. The primary cilium directs osteopontin-induced migration of mesenchymal stem cells by regulating CD44 signaling and Cdc42 activation[J]. Stem Cell Res, 2020, 45: 101799. |
| [43] | Yuan X, Serra RA, Yang S. Function and regulation of primary cilia and intraflagellar transport proteins in the skeleton[J]. Ann N Y Acad Sci, 2015, 1335(1): 78-99. |
| [44] | Moore ER, Zhu YX, Ryu HS, et al. Correction to: periosteal progenitors contribute to load-induced bone formation in adult mice and require primary cilia to sense mechanical stimulation[J]. Stem Cell Res Ther, 2018, 9(1): 229. |
| [45] | Lin T, Sun Y. Arl13b promotes the proliferation, migration, osteogenesis, and mechanosensation of osteoblasts[J]. Tissue Cell, 2023, 82: 102088. |
| [46] | Sutton MM, Duffy MP, Verbruggen SW, et al. Osteoclastogenesis requires primary cilia disassembly and can be inhibited by promoting primary cilia formation pharmacologically[J]. Cells Tissues Organs, 2024, 213(3): 235-244. |
| [47] | Deepak V, Yang ST, Li Z, et al. IFT80 negatively regulates osteoclast differentiation via association with Cbl-b to disrupt TRAF6 stabilization and activation[J]. Proc Natl Acad Sci U S A, 2022, 119(26): e2201490119. |
| [48] | Tirado-Cabrera I, Martin-Guerrero E, Heredero-Jimenez S, et al. PTH1R translocation to primary cilia in mechanically-stimulated ostecytes prevents osteoclast formation via regulation of CXCL5 and IL-6 secretion[J]. J Cell Physiol, 2022, 237(10): 3927-3943. |
| [49] | Wang P, Tang C, Wu J, et al. Pulsed electromagnetic fields regulate osteocyte apoptosis, RANKL/OPG expression, and its control of osteoclastogenesis depending on the presence of primary cilia[J]. J Cell Physiol, 2019, 234(7): 10588-10601. |
| [50] | Zhang Q, Zhang S, Chen J, et al. The interplay between integrins and immune cells as a regulator in cancer immunology[J]. Int J Mol Sci, 2023, 24(7): 6170. |
| [51] | Pang X, He X, Qiu Z, et al. Targeting integrin pathways: mechanisms and advances in therapy[J]. Signal Transduct Target Ther, 2023, 8(1): 1. |
| [52] | Kirschneck C, Thuy M, Leikam A, et al. Role and regulation of mechanotransductive HIF-1α stabilisation in periodontal ligament fibroblasts[J]. Int J Mol Sci, 2020, 21(24): 9530. |
| [53] | Wei L, Chen Q, Zheng Y, et al. Potential role of integrin α₅β₁/focal adhesion kinase (FAK) and actin cytoskeleton in the mechanotransduction and response of human gingival fibroblasts cultured on a 3-dimension lactide-co-glycolide (3D PLGA) scaffold[J]. Med Sci Monit, 2020, 26: e921626. |
| [54] | 徐若君. 整合素α5β1在正畸大鼠牙龈组织改建过程中力学传导机制的初步研究[D]. 南宁: 广西医科大学, 2021. |
| Xu RJ. Preliminary study on mechano-signal transduction mechanisms of integrin α5β1 during gingival remodeling in orthodontic rats[D]. Nanning: Guangxi Medical University, 2021. | |
| [55] | Mohanakumar A, Vijay GL, Vijayaraghavan N, et al. Morphological alterations, activity, mRNA fold changes, and aging changes before and after ortho-dontic force application in young and adult human-derived periodontal ligament cells[J]. Eur J Orthod, 2021, 43(6): 690-696. |
| [56] | Belgardt E, Steinberg T, Husari A, et al. Force-responsive Zyxin modulation in periodontal ligament cells is regulated by YAP rather than TAZ[J]. Cell Signal, 2020, 72: 109662. |
| [57] | Kang T, Yang Z, Zhou M, et al. The role of the Piezo1 channel in osteoblasts under cyclic stret-ching: a study on osteogenic and osteoclast factors[J]. Arch Oral Biol, 2024, 163: 105963. |
|
||