Int J Stomatol ›› 2021, Vol. 48 ›› Issue (4): 491-496.doi: 10.7518/gjkq.2021067

• Reviews • Previous Articles    

Application of digital technology in indirect bonding of straight wire brackets

Niu Ye(),Zeng Yunting,Zeng Yuexiang,Zhang Zeyu,Xiao Liwei()   

  1. Dept. of Orthodontics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
  • Received:2021-01-03 Revised:2021-03-26 Online:2021-07-01 Published:2021-06-30
  • Contact: Liwei Xiao E-mail:newyear2030@163.com;xiao_lw@csu.edu.cn

Abstract:

Indirect bonding of brackets is characterised by more accurate positioning and shorter chair time compared with direct bonding. The straight wire technique reduces the archwire bending and emphasises the accuracy of bonding positions of brackets. Thus, indirect bonding is favoured in straight wire technique. However, the laboratory operation of the conventional indirect bonding method is very complex. In recent years, with the advance digital technology, indirect bonding of straight wire brackets has become more accurate, personalised and simplified. This, some remarkable changes have been obtained. This article reviews the application and development of digital technology, such as three-dimensional(3D) dental cast reconstruction and 3D printing, in the indirect bonding of labial straight wire brackets.

Key words: digital, bracket, indirect bonding, three-dimensional dental cast

CLC Number: 

  • R783.5

TrendMD: 
[1] Silverman E, Cohen M, Gianelly AA, et al. A universal direct bonding system for both metal and plastic brackets[J]. Am J Orthod, 1972,62(3):236-244.
pmid: 4559001
[2] Yildirim K, Saglam-Aydinatay B. Comparative assessment of treatment efficacy and adverse effects during nonextraction orthodontic treatment of Class Ⅰmalocclusion patients with direct and indirect bon-ding: A parallel randomized clinical trial[J]. Am J Orthod Dentofacial Orthop, 2018, 154(1): 26.e1-34.e1.
[3] 郭昱成, 李沐嘉, 董明, 等. 改良式间接粘接技术在正畸临床中的应用研究[J]. 实用口腔医学杂志, 2018,34(3):373-376.
Guo YC, Li MJ, Dong M, et al. Application of modi-fied indirect bonding technique in orthodontic treat-ment[J]. J Pract Stomatol, 2018,34(3):373-376.
[4] Bozelli JV, Bigliazzi R, Barbosa HA, et al. Comparative study on direct and indirect bracket bonding techniques regarding time length and bracket detachment[J]. Dental Press J Orthod, 2013,18(6):51-57.
doi: 10.1590/S2176-94512013000600009
[5] Newman GV. Direct and indirect bonding of brackets[J]. J Clin Orthod, 1974,8(5):264-272.
pmid: 4600553
[6] Pamukcu H, Ozsoy OP, Dagalp R. In vitro and in vivo comparison of orthodontic indirect bonding resins: a prospective study[J]. Niger J Clin Pract, 2018,21(5):614-623.
doi: 10.4103/njcp.njcp_252_17 pmid: 29735863
[7] 陈慧, 郭宏铭, 白玉兴, 等. CAD/CAM转移托盘粘接托槽位置准确性研究[J]. 北京口腔医学, 2012,20(5):270-273.
Chen H, Guo HM, Bai YX, et al. A comparison of virtual and actual bracket position orientated by CAD/CAM indirect bonding method[J]. Beijing J Stomatol, 2012,20(5):270-273.
[8] Duarte MEA, Gribel BF, Spitz A, et al. Reproducibi-lity of digital indirect bonding technique using three-dimensional (3D) models and 3D-printed transfer trays[J]. Angle Orthod, 2020,90(1):92-99.
doi: 10.2319/030919-176.1
[9] Ciuffolo F, Epifania E, Duranti G, et al. Rapid prototyping: a new method of preparing trays for indirect bonding[J]. Am J Orthod Dentofacial Orthop, 2006,129(1):75-77.
doi: 10.1016/j.ajodo.2005.10.005
[10] 黄晓红, 许亮, 林珊. 双层透明压膜片转移托盘间接粘结托槽的效果评价[J]. 上海口腔医学, 2016,25(6):734-737
Huang XH, Xu L, Lin S. Effects of double transparent pressure diaphragm transfer tray on indirect bonding[J]. Shanghai J Stomatol, 2016,25(6):734-737.
[11] Echarri P, Kim TW. Double transfer trays for indirect bonding[J]. J Clin Orthod, 2004,38(1):8-13.
pmid: 15004397
[12] Sachdeva R, Frugé JF, Frugé AM, et al. SureSmile: a report of clinical findings[J]. J Clin Orthod, 2005,39(5):297-314.
pmid: 15961890
[13] Perri A, Gracco A, Siviero L, et al. Customized orthodontics: the Insignia system[J]. Int J Orthod Milwaukee, 2014,25(4):17-20.
[14] Garino F, Garino GB. Computer-aided interactive indirect bonding[J]. Prog Orthod, 2005,6(2):214-223.
[15] Swennen GR, Mommaerts MY, Abeloos J, et al. A cone-beam CT based technique to augment the 3D virtual skull model with a detailed dental surface[J]. Int J Oral Maxillofac Surg, 2009,38(1):48-57.
doi: 10.1016/j.ijom.2008.11.006
[16] Gül Amuk N, Karsli E, Kurt G. Comparison of dental measurements between conventional plaster mo-dels, digital models obtained by impression scanning and plaster model scanning[J]. Int Orthod, 2019,17(1):151-158.
doi: 10.1016/j.ortho.2019.01.014
[17] Soto-Álvarez C, Fonseca GM, Viciano J, et al. Relia-bility, reproducibility and validity of the conventional buccolingual and mesiodistal measurements on 3D dental digital models obtained from intra-oral 3D scanner[J]. Arch Oral Biol, 2020,109:104575.
doi: 10.1016/j.archoralbio.2019.104575
[18] Ko HC, Liu WT, Hou D, et al. Agreement of treatment recommendations based on digital vs plaster dental models[J]. Am J Orthod Dentofacial Orthop, 2019,155(1):135-142.
doi: 10.1016/j.ajodo.2018.03.018
[19] Kirschneck C, Kamuf B, Putsch C, et al. Conformity, reliability and validity of digital dental models created by clinical intraoral scanning and extraoral plaster model digitization workflows[J]. Comput Biol Med, 2018,100:114-122.
doi: 10.1016/j.compbiomed.2018.06.035
[20] McLaughlin RP, Bennett JC. Bracket placement with the preadjusted appliance[J]. J Clin Orthod, 1995,29(5):302-311.
pmid: 8617853
[21] El-Timamy AM, El-Sharaby FA, Eid FH, et al. Three-dimensional imaging for indirect-direct bonding[J]. Am J Orthod Dentofacial Orthop, 2016,149(6):928-931.
doi: 10.1016/j.ajodo.2015.12.009 pmid: 27242004
[22] 万贤凤, 张文斌, 章锦才, 等. Damon Q自锁托槽在数字化牙颌模型上的模拟定位研究[J]. 华西口腔医学杂志, 2015,33(5):500-503.
Wan FX, Zhang WB, Zhang JC, et al. Preliminary stu-dy on positioning of Damon Q self-ligating brackets in a digital integration model[J]. West China J Stoma-tol, 2015,33(5):500-503.
[23] 林泽, 陈军, 李雪. 数字化3D打印技术在口腔舌侧正畸托槽粘接中应用研究[J]. 中国实用口腔科杂志, 2016,9(2):104-107.
Lin Z, Chen J, Li X. Application study of digital 3D printing in individual lingual orthodontic brackets[J]. Chin J Pract Stomatol, 2016,9(2):104-107.
[24] 田野, 吴清柱, 丁静, 等. 3D打印技术对口腔舌侧正畸托槽粘接的效果观察[J]. 现代实用医学, 2016,28(8):1101-1103.
Tian Y, Wu QZ, Ding J, et al. Effect of 3D printing technology on bonding of lingual orthodontic brac-kets[J]. Modern Pract Med, 2016,28(8):1101-1103.
[25] 陈建宇, 张志光, 李子夫. 选择性激光熔化技术在口腔医学领域中的应用[J]. 国际口腔医学杂志, 2014,41(1):97-101
Chen JY, Zhang ZG, Li ZF. Application of selective Laser melting technique in stomatology[J]. J Int Sto-matol, 2014,41(1):97-101.
[26] 韩宇, 郭宏铭, 白玉兴, 等. 选区激光熔化技术制作钛合金个体化托槽槽沟的精度研究[J]. 北京口腔医学, 2016,24(1):44-45
Han Y, Guo HM, Bai YX, et al. The study on the accuracy of titanium brackets’s slot made by the se-lective Laser melting technology[J]. Beijing J Stoma-tol, 2016,24(1):44-45.
[27] Brown MW, Koroluk L, Ko CC, et al. Effectiveness and efficiency of a CAD/CAM orthodontic bracket system[J]. Am J Orthod Dentofacial Orthop, 2015,148(6):1067-1074.
doi: 10.1016/j.ajodo.2015.07.029
[28] Sha HN, Choi SH, Yu HS, et al. Debonding force and shear bond strength of an array of CAD/CAM-based customized orthodontic brackets, placed by indirect bonding‒an In Vitro study[J]. PLoS One, 2018,13(9):e0202952.
doi: 10.1371/journal.pone.0202952
[29] Pamukçu H, Özsoy ÖP. Indirect bonding revisited[J]. Turk J Orthod, 2016,29(3):80-86.
doi: 10.5152/TurkJOrthod.
[30] 李杰, 马文盛. 唇侧间接粘接技术进展的研究[J]. 现代口腔医学杂志, 2019,33(05):314-317.
Li J, Ma WS. Study on the development of indirect bonding of labial brackets[J]. J Modern Stomatol, 2019,33(5):314-317.
[31] Castilla AE, Crowe JJ, Moses JR, et al. Measurement and comparison of bracket transfer accuracy of five indirect bonding techniques[J]. Angle Orthod, 2014,84(4):607-614.
doi: 10.2319/070113-484.1 pmid: 24555689
[32] Schmid J, Brenner D, Recheis W, et al. Transfer accuracy of two indirect bonding techniques-an in vitro study with 3D scanned models[J]. Eur J Orthod, 2018,40(5):549-555.
doi: 10.1093/ejo/cjy006
[33] Son KH, Park JW, Lee DK, et al. New virtual orthodontic treatment system for indirect bonding using the stereolithographic technique[J]. Korean J Orthod, 2011,41(2):138.
doi: 10.4041/kjod.2011.41.2.138
[34] Kim J, Chun YS, Kim M. Accuracy of bracket positions with a CAD/CAM indirect bonding system in posterior teeth with different cusp heights[J]. Am J Orthod Dentofacial Orthop, 2018,153(2):298-307.
doi: 10.1016/j.ajodo.2017.06.017
[35] Xue CR, Xu H, Guo YW, et al. Accurate bracket placement using a computer-aided design and computer-aided manufacturing-guided bonding device: an in vivo study[J]. Am J Orthod Dentofacial Orthop, 2020,157(2):269-277.
doi: 10.1016/j.ajodo.2019.03.022
[36] 陈继民, 孙佳齐, 晏恒峰. 3D打印技术在口腔正畸中的应用进展[J]. 应用激光, 2017,37(5):744-751
Chen JM, Sun JQ, Yan HF. A review of 3D printing techniques for oral orthodontics[J]. Appl Laser, 2017,37(5):744-751.
[37] 张达, 王林川, 周彦恒, 等. 3D打印间接粘接托槽精度[J]. 北京大学学报(医学版), 2017,49(4):704-708.
Zhang D, Wang LC, Zhou YH, et al. Precision of three-dimensional printed brackets[J]. J Peking Univ (Heal Sci), 2017,49(4):704-708.
[1] Tang Zhiwei,Gao Ying. Application and progress on targeted endodontic microsurgery techniques [J]. Int J Stomatol, 2022, 49(6): 678-683.
[2] Cai Pingping,Zhuo Yingying,Lin Jie,Zheng Zhi-qiang.. Application of computer-aided technology in fiber post removal [J]. Int J Stomatol, 2022, 49(6): 731-736.
[3] Luo Qiyue,Liu Yeyu,Luo Yilin,Man Yi.. Centric relation centered, facial esthetically and prosthetically driven digital workflow for edentulism implant rehabilitation: a clinical report [J]. Int J Stomatol, 2022, 49(4): 426-431.
[4] Pang Yu,Liu Xian,Wang Liao. Application of digital template in the extraction of embedded supernumerary tooth [J]. Int J Stomatol, 2022, 49(4): 448-452.
[5] Zhao Zhe,Wang Fu,Zheng Xiuli,An Na,Chen Jihua.. Research progress on measuring methods of tooth movement under functional load [J]. Int J Stomatol, 2022, 49(3): 362-366.
[6] Luo En. Exploration and clinical application of artificial intelligence in orthognathic surgery [J]. Int J Stomatol, 2022, 49(2): 125-131.
[7] Li Ruyi,Luo Feng,Wan Qianbing. Principle and application progress of real-time mandibular motion recording system [J]. Int J Stomatol, 2022, 49(2): 182-189.
[8] Liu Yi,Liu Yi. Research progress on the correlation between impacted canines and palatal morphology [J]. Int J Stomatol, 2021, 48(2): 243-248.
[9] Zhao Zhihe. Comparison of anterior tooth torque design in digital orthodontics [J]. Int J Stomatol, 2021, 48(1): 1-6.
[10] Wang Ben,Xu Zhezhen,Wei Xi. Application and progress of a digitalized minimally invasive technique in endodontics [J]. Int J Stomatol, 2021, 48(1): 110-118.
[11] Cai Xiaoxiao. Digital planning strategies in aesthetic areas [J]. Int J Stomatol, 2019, 46(6): 621-630.
[12] Xue Du,Fang Qu,Weicai Liu. Establishment of a three-dimensional virtual dental patient and its application in esthetic restoration [J]. Inter J Stomatol, 2018, 45(6): 695-702.
[13] Qin Wu,Yimin Zhao. Current research and application situation of robot in stomatology [J]. Inter J Stomatol, 2018, 45(5): 615-620.
[14] Lü Jing, Ling Junqi. Research progress on the digital template for root canal location [J]. Inter J Stomatol, 2018, 45(2): 233-238.
[15] Jing Xuan, Wu Xiuping, Wang Jun. Clinical research progress on lingual orthodontic techniques [J]. Inter J Stomatol, 2018, 45(1): 100-105.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[9] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[10] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .