国际口腔医学杂志 ›› 2026, Vol. 53 ›› Issue (2): 274-280.doi: 10.7518/gjkq.2026115

• 综述 • 上一篇    

仿生多孔钛种植体表面形貌介导骨免疫调控巨噬细胞行为的研究现状

余铭轩1(),何茹逸1,鄢荣曾1,2()   

  1. 1.南昌大学抚州医学院 抚州 344100
    2.南昌大学抚州医学院先进制造技术临床应用工程研究中心 抚州 344100
  • 收稿日期:2025-01-19 修回日期:2025-10-19 出版日期:2026-03-01 发布日期:2026-02-13
  • 通讯作者: 鄢荣曾
  • 作者简介:余铭轩,学士,Email:ymx2656976326@163.com
  • 基金资助:
    江西省教育厅科学技术研究重点项目(GJJ2203401);江西省自然科学基金资助项目(20252BAC240567);抚州科技计划项目重点研发计划(2021DB005)

Current status of bone immunomodulation of macrophage behavior mediated by the surface morphology of bionic porous titanium implants

Mingxuan Yu1(),Ruyi He1,Rongzeng Yan1,2()   

  1. 1.Fuzhou Medical College of Nanchang University, Fuzhou 344100, China
    2.Engineering Research Center for Clinical Application of Advanced Manufacturing Technology, Fuzhou Medical College of Nanchang University, Fuzhou 344100, China
  • Received:2025-01-19 Revised:2025-10-19 Online:2026-03-01 Published:2026-02-13
  • Contact: Rongzeng Yan
  • Supported by:
    Key Project of Science and Technology Research of Jiangxi Provincial Department of Education(GJJ2203401);Jiangxi Provincial Natural Science Foundation Funded Project(20252BAC240567);Key Research and Development Program of Fuzhou Science and Technology Plan Project(2021DB005)

摘要:

钛种植体植入机体后会引起宿主免疫炎症反应,其进程影响骨组织的修复与再生。以巨噬细胞为核心的骨免疫调控近年来备受关注。仿生多孔钛种植体表面形貌可调控其周围免疫微环境中巨噬细胞的生物学行为,促进血管生成和加速骨改建。本文阐述了巨噬细胞在仿生多孔钛种植体植入后免疫反应中的作用及其表面处理后骨免疫调控能力,重点介绍表面仿生多孔结构设计对巨噬细胞生物学行为的影响。深入理解钛种植体与机体界面相互作用,为临床仿生设计、制备具有免疫调节功能的多孔钛种植体提供新思路。

关键词: 钛种植体, 仿生设计, 表面形貌, 巨噬细胞极化, 骨免疫调节

Abstract:

Implantation of titanium implants into the organism induces an immune-inflammatory response from the host. The course of this procedure affects the repair and regeneration of bone tissues. Macrophage-centered bone immunomodulation has received considerable attention in recent years. The surface morphology of bionic porous titanium implants can modulate the biological behavior of macrophages in their surrounding immune microenvironment, which promotes angiogenesis and accelerates bone remodeling. This study describes the role of macrophages in the immune response after implantation of porous titanium bionic implants and the capability of macrophages to modulate bone immunity after surface treatment. Specifically, the effect of the design of porous bionic surface structures on the biological beha-vior of macrophages is investigated. In-depth understanding of titanium implant-organism interface interactions provides new ideas for clinical bionic design and preparation of porous titanium implants with immunomodulatory functions.

Key words: titanium implants, bionics design, surfa-ce topography, macrophage, osteoimmunomodulation

中图分类号: 

  • R783.1

表 1

钛植入物表面处理后不同形貌对巨噬细胞生物学性能影响研究"

作者发表时间/年制作工艺处理方法特性结果及应用意义
物理化学
Yang等[11]2021SLM对钛片进行喷砂、大颗粒酸蚀和碱热反应处理粗糙度润湿性-经处理构建的微纳米形貌提高亲水性,促进细胞增殖和巨噬细胞向M2表型极化,促使细胞增殖和M2型巨噬细胞极化,从而发挥局部微环境的抗炎作用
Razzi等[12]2020SLM表面生物功能化的等离子体电解氧化与含/不含银纳米粒子粗糙度生物活性物质未经处理的多孔钛在巨噬细胞中产生强促炎反应,等离子体电解氧化处理的多孔钛显示更高的诱导巨噬细胞向抗炎表型极化的潜力。然而,含银纳米颗粒的掺入对附着的巨噬细胞有强细胞毒性
Liu等[13]2021AM利用阳极氧化在钛合金/含铜钛合金表面制备纳米管粗糙度化学成分TNT-TC4-5Cu合金在无LPS刺激和有LPS刺激时均能抑制巨噬细胞极化,减少活性氧生成,从而促进成骨细胞的增殖和黏附
Zhao等[14]2021SLM在N2中进行后处理使钛合金植入物表面形成均匀致密的氮化涂层粗糙度生物活性物质氮化物涂层协同表面纹理使Arg-1和甘露糖受体表达阳性的M2型细胞比例显著升高,促进巨噬细胞极化为抗炎型
Li等[15]2022SLM利用水热处理在TC4表面制备球形SrTiO3颗粒纳米结构粗糙度生物活性物质在含锶微/纳米结构表面培养的巨噬细胞向抗炎M2表型极化,并增强成骨生长因子的表达
Wang等[16]2022SLM构建3D打印Ti6Al4V-SF复合支架,以Mg作为金属有机骨架材料在其表面负载淫羊藿苷中药-生物活性物质支架控释淫羊藿苷和Mg2+可通过抑制notch1信号通路,使巨噬细胞向M2型分化,诱导抗炎细胞因子的分泌,显著改善骨代谢,有助于改善支架的骨结合
Wang等[17]2022DMLS制备3D打印Ti6Al4V和透明质酸/壳聚糖混合水凝胶复合支架-生物活性物质支架周围的水凝胶持续释放内源性生长因子和细胞因子,通过同时促使巨噬细胞向M2型极化和人骨髓间充质干细胞成骨向分化,调节促再生免疫微环境,加速骨再生
Wu等[18]2023SLM铜、锶离子与天然聚合物结合修饰种植体表面-生物活性物质铜、锶离子促使巨噬细胞分泌促骨生成因子,诱导成骨,表现出免疫调节成骨的作用
Wu等[19]2023EBM利用水热处理形成BaTiO3涂层修饰支架表面-生物活性物质极化压电BaTiO3/Ti6Al4V(BT/Ti)支架的压电效应促进巨噬细胞M2极化和小鼠胚胎成骨细胞前体细胞的免疫调节成骨。压电BT/Ti(极性)支架抑制炎症性丝裂原活化蛋白激酶/应激活化蛋白激酶信号级联,激活巨噬细胞氧化磷酸化和腺嘌呤核苷三磷酸合成

图 1

不同表面形貌仿生多孔钛种植体植入后调控巨噬细胞促成骨机理图通过表面改性和表面多孔结构设计,改变仿生多孔钛种植体表面形貌,优化其免疫调节功能。该种植体植入后,宿主免疫反应中的巨噬细胞受其表面理化特性影响,改变极化状态,在促炎M1型和抗炎M2型巨噬细胞中相互转变,创造利于骨再生的免疫微环境,平衡成骨细胞和破骨细胞,促进骨结合。黑色箭头①:种植体周围组织中,原始巨噬细胞受到IL-4、IL-13诱导激活为M2型巨噬细胞;原始巨噬细胞受到LPS、INF-γ诱导激活为M1型巨噬细胞。红色箭头②:在不同刺激下,M1型与M2型巨噬细胞之间发生相互转化。黑色箭头③:M1型和M2型巨噬细胞在相互转化过程中调节其周围免疫微环境影响成骨细胞与破骨细胞之间的平衡,创造有有利于骨再生的微环境[CD206:甘露糖受体(mannose receptor);CD80:分化簇80(cluster of differentiation 80);CD86:分化簇86(cluster of differentiation 86);iNOS:诱导型-氧化氮合酶(inducible nitric oxide synthase);M1:经典活化巨噬细胞(classically activated macrophage);M2:替代活化巨噬细胞(alternatively activated macrophage);OPN:骨桥蛋白(osteopomtin);OCN:骨钙素(osteocalcin);BMP-2:骨形态发生蛋白(bone morphogenetic protein);TRAP:抗酒石酸酸性磷酸酶(tartrate resistant acid phosphatase);SEMA:信号素(semaphoring);VEGF:血管内皮生长因子(vascular endothelial growth factor);TNF-α:肿瘤坏死因子α(tumour necrosis factor-α);ROS:活性氧(reactive oxygen species)]。"

[1] Zhang LC, Chen LY. A review on biomedical tita-nium alloys: recent progress and prospect[J]. Adv Eng Mater, 2019, 21(4): 1801215.
[2] Xiao F, Ye JH, Huang CX, et al. Gradient gyroid Ti6Al4V scaffolds with TiO2 surface modification: promising approach for large bone defect repair[J]. Biomater Adv, 2024, 161: 213899.
[3] Wang ZH, Zhang M, Liu ZW, et al. Biomimetic design strategy of complex porous structure based on 3D printing Ti-6Al-4V scaffolds for enhanced osseointegration[J]. Mater Des, 2022, 218: 110721.
[4] Lee J, Byun H, Perikamana SKM, et al. Current advances in immunomodulatory biomaterials for bone regeneration[J]. Adv Healthc Mater, 2019, 8(4): e1801106.
[5] Davenport Huyer L, Pascual-Gil S, Wang YF, et al. Advanced strategies for modulation of the mate-rial-macrophage interface[J]. Adv Funct Materials, 2020, 30(44): 1909331.
[6] Zhu YZ, Liang H, Liu XM, et al. Regulation of macrophage polarization through surface topography design to facilitate implant-to-bone osteointegration[J]. Sci Adv, 2021, 7(14): eabf6654.
[7] Liu Y, Rui ZY, Cheng W, et al. Characterization and evaluation of a femtosecond laser-induced osseointegration and an anti-inflammatory structure genera-ted on a titanium alloy[J]. Regen Biomater, 2021, 8(2): rbab006.
[8] Xia Y, He XT, Xu XY, et al. Exosomes derived from M0, M1 and M2 macrophages exert distinct in-fluences on the proliferation and differentiation of mesenchymal stem cells[J]. PeerJ, 2020, 8: e8970.
[9] Amengual-Peñafiel L, Córdova LA, Jara-Sepúlveda MC, et al. Osteoimmunology drives dental implant osseointegration: a new paradigm for implant dentistry[J]. Jpn Dent Sci Rev, 2021, 57: 12-19.
[10] Ji ZB, Wan Y, Wang HW, et al. Effects of surface morphology and composition of titanium implants on osteogenesis and inflammatory responses: a review[J]. Biomed Mater, 2023, 18(4). doi: 10.1088/1748-605X/acd976 .
doi: 10.1088/1748-605X/acd976
[11] Yang Y, Zhang T, Jiang MY, et al. Effect of the immune responses induced by implants in a integrated three-dimensional micro-nano topography on osseointegration[J]. J Biomed Mater Res A, 2021, 109(8): 1429-1440.
[12] Razzi F, Fratila-Apachitei LE, Fahy N, et al. Im-munomodulation of surface biofunctionalized 3D printed porous titanium implants[J]. Biomed Mater, 2020, 15(3): 035017.
[13] Liu ZG, Liu Y, Liu S, et al. The effects of TiO2 nanotubes on the biocompatibility of 3D printed Cu-bea-ring TC4 alloy[J]. Mater Des, 2021, 207: 109831.
[14] Zhao XY, Wang BB, Lai WJ, et al. Improved tribological properties, cyto-biocompatibility and anti-inflammatory ability of additive manufactured Ti-6Al-4V alloy through surface texturing and nitriding[J]. Surf Coat Technol, 2021, 425: 127686.
[15] Li G, Liu WT, Liang LX, et al. Preparing Sr-contai-ning nano-structures on micro-structured titanium alloy surface fabricated by additively manufactu-ring to enhance the anti-inflammation and osteoge-nesis[J]. Colloids Surf B Biointerfaces, 2022, 218: 112762.
[16] Wang W, Xiong YZ, Zhao RL, et al. A novel hierarchical biofunctionalized 3D-printed porous Ti6Al4V scaffold with enhanced osteoporotic osseointegration through osteoimmunomodulation[J]. J Nanobiotechnology, 2022, 20(1): 68.
[17] Wang YP, Feng ZJ, Liu X, et al. Titanium alloy composited with dual-cytokine releasing polysaccharide hydrogel to enhance osseointegration via osteogenic and macrophage polarization signaling pathways[J]. Regen Biomater, 2022, 9: rbac003.
[18] Wu YP, Shi XW, Wang JJ, et al. A surface metal ion-modified 3D-printed Ti-6Al-4V implant with direct and immunoregulatory antibacterial and osteogenic activity[J]. Front Bioeng Biotechnol, 2023, 11: 1142264.
[19] Wu H, Dong H, Tang Z, et al. Electrical stimulation of piezoelectric BaTiO3 coated Ti6Al4V scaffolds pro-motes anti-inflammatory polarization of macropha-ges and bone repair via MAPK/JNK inhibition and OXPHOS activation[J]. Biomaterials, 2023, 293: 121990.
[20] Li JX, Zhong HZ, Cao BJ, et al. Comparative study of 3D-printed porous titanium alloy with rod designs of three different geometric structures for orthopaedic implantation[J]. Acta Metall Sin Engl Lett, 2024, 37(1): 54-66.
[21] Pei X, Wang LN, Zhou CC, et al. Ti6Al4V orthopedic implant with biomimetic heterogeneous structure via 3D printing for improving osteogenesis[J]. Mater Des, 2022, 221: 110964.
[22] Liang HX, Yang YW, Xie DQ, et al. Trabecular-like Ti-6Al-4V scaffolds for orthopedic: fabrication by selective laser melting and in vitro biocompatibility[J]. J Mater Sci Technol, 2019, 35(7): 1284-1297.
[23] Pei X, Wu LN, Zhou CC, et al. 3D printed titanium scaffolds with homogeneous diamond-like structures mimicking that of the osteocyte microenvironment and its bone regeneration study[J]. Biofabrication, 2020, 13(1). doi: 10.1088/1758-5090/abc060 .
doi: 10.1088/1758-5090/abc060
[24] Zhang YN, Sun N, Zhu MR, et al. The contribution of pore size and porosity of 3D printed porous tita-nium scaffolds to osteogenesis[J]. Biomater Adv, 2022, 133: 112651.
[25] Liu QY, Wei F, Coathup M, et al. Effect of porosity and pore shape on the mechanical and biological properties of additively manufactured bone scaffolds[J]. Adv Healthc Mater, 2023, 12(30): e2301111.
[26] Liu Y, Cao LY, Zhang S, et al. Effect of hierarchical porous scaffold on osteoimmunomodulation and bone formation[J]. Appl Mater Today, 2020, 20: 100779.
[27] Wang C, Wu J, Liu LY, et al. Improving osteoinduction and osteogenesis of Ti6Al4V alloy porous scaffold by regulating the pore structure[J]. Front Chem, 2023, 11: 1190630.
[28] Wu YQ, Liu Z, Xu ZC, et al. Macrophage responses to selective laser-melted Ti-6Al-4V scaffolds of different pore geometries and the corresponding osteoimmunomodulatory effects toward osteogenesis[J]. J Biomed Mater Res A, 2022, 110(4): 873-883.
[29] Deng FY, Liu LL, Li Z, et al. 3D printed Ti6Al4V bone scaffolds with different pore structure effects on bone ingrowth[J]. J Biol Eng, 2021, 15(1): 4.
[30] Zhao HY, Han YF, Pan C, et al. Design and mecha-nical properties verification of gradient voronoi scaffold for bone tissue engineering[J]. Micromachines (Basel), 2021, 12(6): 664.
[31] Feng JW, Fu JZ, Yao XH, et al. Triply periodic minimal surface (TPMS) porous structures: from multi-scale design, precise additive manufacturing to multidisciplinary applications[J]. Int J Extreme Manuf, 2022, 4(2): 022001.
[32] He YD, Li Z, Ding X, et al. Nanoporous titanium implant surface promotes osteogenesis by suppres-sing osteoclastogenesis via integrin β1/FAKpY397/MAPK pathway[J]. Bioact Mater, 2021, 8: 109-123.
[33] Dai XH, Bai YY, Heng BC, et al. Biomimetic hierarchical implant surfaces promote early osseointegration in osteoporotic rats by suppressing macrophage activation and osteoclastogenesis[J]. J Mater Chem B, 2022, 10(11): 1875-1885.
[34] Zhou Y, Tang CZ, Deng JL, et al. Micro/nano topography of selective laser melting titanium inhibits osteoclastogenesis via mediation of macrophage pola-rization[J]. Biochem Biophys Res Commun, 2021, 581: 53-59.
[1] 刘翼,邱江珊,申道南,关鑫,丁一. 不同脉冲能量Er: YAG激光对钛盘表面形貌及生物学性能的影响[J]. 国际口腔医学杂志, 2024, 51(6): 713-721.
[2] 李佳敏,李毓晨,葛张洁,廖凌子,郭鑫,郭晓龙,周平. 抗菌肽在口腔钛种植体涂层中的研究进展[J]. 国际口腔医学杂志, 2024, 51(5): 572-584.
[3] 张政,杨锋,李家锋,曹焜. 钛种植体抗菌化修饰的研究进展[J]. 国际口腔医学杂志, 2024, 51(5): 585-595.
[4] 朱俊瑾,王剑. 钛种植体表面银纳米颗粒负载方法的进展[J]. 国际口腔医学杂志, 2021, 48(3): 334-340.
[5] 赵玉洁,管晓燕,李小兰,陈琦君,王倩,刘建国. 巨噬细胞极化参与正畸牙移动的研究进展[J]. 国际口腔医学杂志, 2020, 47(4): 478-483.
[6] 刘晔,洪润丹,王志国,刘涵云,孟琛达,王茹,徐全臣. 人单核细胞和外周血单个核细胞衍生的巨噬细胞极化特性的比较[J]. 国际口腔医学杂志, 2020, 47(3): 286-292.
[7] 刘育豪,袁泉,张士文. 基于共价接枝的钛种植体载药抗菌涂层的研究进展[J]. 国际口腔医学杂志, 2019, 46(2): 228-233.
[8] 祁星颖,郑国莹,隋磊. 钛种植体表面形貌对成骨的影响[J]. 国际口腔医学杂志, 2018, 45(5): 527-533.
[9] 樊牮,邹耿森,陈江. 钛种植体表面纳米改性及其与机体免疫应答[J]. 国际口腔医学杂志, 2014, 41(6): 691-693.
[10] 庄秀妹 邓飞龙. 钛表面及其涂层纳米化对骨结合的影响和机制[J]. 国际口腔医学杂志, 2014, 41(4): 427-430.
[11] 刘媛媛1 李果1 任家银1 赵书平1 聂晶2 王虎1. 纳米钛膜种植体-骨界面的骨整合研究[J]. 国际口腔医学杂志, 2012, 39(3): 312-316.
[12] 张静超,莫安春,. 钛种植体表面微结构对成骨细胞影响的研究进展[J]. 国际口腔医学杂志, 2007, 34(03): 207-209.
[13] 张悦,夏海斌,. 碱热处理制备生物活性钛种植体[J]. 国际口腔医学杂志, 2007, 34(03): 216-219.
[14] 刘同军,程祥荣,. 钛金属种植体表面生物化学改性[J]. 国际口腔医学杂志, 2006, 33(03): 210-212.
[15] 董强 丁仲鹃. HA涂层钛种植体骨界面的生物学研究进展[J]. 国际口腔医学杂志, 2003, 30(01): 34-35.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!