国际口腔医学杂志 ›› 2022, Vol. 49 ›› Issue (5): 578-585.doi: 10.7518/gjkq.2022071

• 综述 • 上一篇    下一篇

生物陶瓷类根管封闭剂的研究进展

颜愈佳(),邹玲()   

  1. 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心四川大学华西口腔医院牙体牙髓病科 成都 610041
  • 收稿日期:2021-12-06 修回日期:2022-05-12 出版日期:2022-09-01 发布日期:2022-09-16
  • 通讯作者: 邹玲
  • 作者简介:颜愈佳,硕士,Email:1219216797@qq.com
  • 基金资助:
    国家自然科学基金(82071111);四川省科学技术厅项目(2020YFSY0019)

Reseach progress on bioceramic root canal sealer

Yan Yujia(),Zou Ling.()   

  1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2021-12-06 Revised:2022-05-12 Online:2022-09-01 Published:2022-09-16
  • Contact: Ling. Zou
  • Supported by:
    National Natural Science Foundation of China(82071111);Key Project of the Science and Technology Department of Sichuan Province(2020YFSY0019)

摘要:

根管封闭剂作为严密封闭根管的材料之一,其性能对于根管治疗的成功具有一定积极意义。材料的研发与更新换代推动了临床治疗的发展与进步,生物陶瓷材料作为当下新型材料的一种,在众多医学领域里的应用结果均证明其有良好的生物相容性与生物活性。生物陶瓷类根管封闭剂具有良好的物理、化学和生物学性能,其临床应用日趋广泛。本文通过回顾近年来生物陶瓷类根管封闭剂的构成、生物性能及物理化学性能的相关文献对实验室及临床研究结果进行综述,拟为临床医生选择此类根管封闭剂提供参考。

关键词: 生物陶瓷, 根管封闭剂, 根管充填糊剂, 生物相容性

Abstract:

Root canal sealers are used in tight root canal filling. Their properties partly contribute to the success of root canal treatments. The development of the materials have promoted progress in clinical therapy. Bioceramics have good biocompatibility and bioactivity and have been used in many medical fields. Bioceramic root canal sealers have excellent physico-chemical and biological properties. This paper reviews the literature about the composition, biological properties, and physico-chemical properties of bioceramic root canal sealers and summarizes their laboratory and clinical research results.

Key words: bioceramics, root canal sealer, root filling paste, biocompatibility

中图分类号: 

  • R 781.05
1 黄定明, 周学东. 根管治疗难度分析的要点[J]. 中华口腔医学杂志, 2006, 41(9): 532-534.
Huang DM, Zhou XD. The key points of the difficulty analysis of root canal treatment[J]. Chin J Stomatol, 2006, 41(9): 532-534.
2 樊少昕, 池学谦. 不同根管封闭剂封闭性的研究进展[J]. 口腔医学, 2018, 38(1): 73-77.
Fan SX, Chi XQ. Research progress of the sealing ability of different root canal sealers[J]. Stomatology, 2018, 38(1): 73-77.
3 刘镇凡, 梁晓. 常用根管封闭剂研究概况[J]. 系统医学, 2019, 4(3): 196-198.
Liu ZF, Liang X. Overview of commonly used root canal sealers[J]. Syst Med, 2019, 4(3): 196-198.
4 杨学英, 李贤玉. 根管封闭剂研究进展[J]. 全科口腔医学电子杂志, 2019, 6(20): 27-28, 32.
Yang XY, Li XY. Research progress of root canal sealers[J]. Electron J Gen Stomatol, 2019, 6(20): 27-28, 32.
5 Raghavendra SS, Jadhav GR, Gathani KM, et al. Bioceramics in endodontics-a review[J]. J Istanb Univ Fac Dent, 2017, 51(3 ): S128-S137.
6 Jitaru S, Hodisan I, Timis L, et al. The use of bio-ceramics in endodontics-literature review[J]. Clujul Med, 2016, 89(4): 470-473.
7 Al-Haddad A, Che Ab Aziz ZA. Bioceramic-based root canal sealers: a review[J]. Int J Biomater, 2016, 2016: 9753210.
8 Jafari F, Jafari S. Composition and physicochemical properties of calcium silicate based sealers: a review article[J]. J Clin Exp Dent, 2017, 9(10): e1249-e1255.
9 Donnermeyer D, Bunne C, Schäfer E, et al. Retrea-tability of three calcium silicate-containing sealers and one epoxy resin-based root canal sealer with four different root canal instruments[J]. Clin Oral Investig, 2018, 22(2): 811-817.
10 Yang SE, Baek SH, Lee W, et al. In vitro evaluation of the sealing ability of newly developed calcium phosphate-based root canal sealer[J]. J Endod, 2007, 33(8): 978-981.
11 Bae KH, Chang SW, Bae KS, et al. Evaluation of pH and calcium ion release in capseal Ⅰ and Ⅱ and in two other root canal sealers[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2011, 112(5): e23-e28.
12 Grosssman LI. Obturation of the radicular space, endodontic practice[M]. 14th ed. India: Wolters Kluwer, 2021: 334.
13 Seo DG, Lee D, Kim YM, et al. Biocompatibility and mineralization activity of three calcium silicate-based root canal sealers compared to conventional resin-based sealer in human dental pulp stem cells[J]. Materials (Basel), 2019, 12(15): E2482.
14 Shim K, Jang YE, Kim Y. Comparison of the effects of a bioceramic and conventional resin-based sea-lers on postoperative pain after nonsurgical root canal treatment: a randomized controlled clinical study[J]. Materials (Basel), 2021, 14(10): 2661.
15 Orstavik D. Materials used for root canal obturation: technical, biological and clinical testing[J]. Endod Top, 2005, 12(1): 25-38.
16 Sun ZL, Wataha JC, Hanks CT. Effects of metal ions on osteoblast-like cell metabolism and differentiation[J]. J Biomed Mater Res, 1997, 34(1): 29-37.
17 Zoufan K, Jiang J, Komabayashi T, et al. Cytotoxicity evaluation of gutta flow and endo sequence BC sealers[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2011, 112(5): 657-661.
18 Salles LP, Gomes-Cornélio AL, Guimarães FC, et al. Mineral trioxide aggregate-based endodontic sealer stimulates hydroxyapatite nucleation in human osteoblast-like cell culture[J]. J Endod, 2012, 38(7): 971-976.
19 Oh H, Kim E, Lee S, et al. Comparison of biocompatibility of calcium silicate-based sealers and epo-xy resin-based sealer on human periodontal ligament stem cells[J]. Materials (Basel), 2020, 13(22): E5242.
20 Erdogan H, Yildirim S, Cobankara FK. Cytotoxicity and genotoxicity of salicylate-and calcium silicate-based root canal sealers on primer human periodontal ligament fibroblasts[J]. Aust Endod J, 2021, 47(3): 645-653.
21 Bryan TE, Khechen K, Brackett MG, et al. In vitro osteogenic potential of an experimental calcium silicate-based root canal sealer[J]. J Endod, 2010, 36(7): 1163-1169.
22 Best SM, Porter AE, Thian ES, et al. Bioceramics: past, present and for the future[J]. J Eur Ceram Soc, 2008, 28(7): 1319-1327.
23 Rodríguez-Lozano FJ, García-Bernal D, Oñate-Sánchez RE, et al. Evaluation of cytocompatibility of calcium silicate-based endodontic sealers and their effects on the biological responses of mesenchymal dental stem cells[J]. Int Endod J, 2017, 50(1): 67-76.
24 Lee BN, Hong JU, Kim SM, et al. Anti-inflammatory and osteogenic effects of calcium silicate-based root canal sealers[J]. J Endod, 2019, 45(1): 73-78.
25 Giacomino CM, Wealleans JA, Kuhn N, et al. Comparative biocompatibility and osteogenic potential of two bioceramic sealers[J]. J Endod, 2019, 45(1): 51-56.
26 Jeanneau C, Giraud T, Laurent P, et al. BioRoot RCS extracts modulate the early mechanisms of periodontal inflammation and regeneration[J]. J Endod, 2019, 45(8): 1016-1023.
27 Olcay K, Taşli PN, Güven EP, et al. Effect of a no-vel bioceramic root canal sealer on the angiogenesis-enhancing potential of assorted human odontogenic stem cells compared with principal tricalcium silicate-based cements[J]. J Appl Oral Sci, 2020, 28: e20190215.
28 Yuan ZL, Zhu XD, Li YH, et al. Influence of iRoot SP and mineral trioxide aggregate on the activation and polarization of macrophages induced by lipopolysaccharide[J]. BMC Oral Health, 2018, 18(1): 56.
29 Candeiro GT, Correia FC, Duarte MA, et al. Evaluation of radiopacity, pH, release of calcium ions, and flow of a bioceramic root canal sealer[J]. J Endod, 2012, 38(6): 842-845.
30 International Organization for Standardization. Dentistry-root canal sealing materials (Iso 6876: 2012) [S]. 2012.
31 Antunes TBM, Janini ACP, Pelepenko LE, et al. Heating stability, physical and chemical analysis of calcium silicate-based endodontic sealers[J]. Int Endod J, 2021, 54(7): 1175-1188.
32 Lee JK, Kwak SW, Ha JH, et al. Physicochemical properties of epoxy resin-based and bioceramic-based root canal sealers[J]. Bioinorg Chem Appl, 2017, 2017: 2582849.
33 Tanomaru-Filho M, Torres FFE, Chávez-Andrade GM, et al. Physicochemical properties and volume-tric change of silicone/bioactive glass and calcium silicate-based endodontic sealers[J]. J Endod, 2017, 43(12): 2097-2101.
34 Desai, Chandler N. Calcium hydroxide-based root canal sealers: a review[J]. J Endod, 2009, 35(4): 475-480.
35 Zhang H, Shen Y, Ruse ND, et al. Antibacterial activity of endodontic sealers by modified direct contact test against Enterococcus faecalis [J]. J Endod, 2009, 35(7): 1051-1055.
36 Dalmia S, Gaikwad A, Samuel R, et al. Antimicro-bial efficacy of different endodontic sealers against Enterococcus faecalis: an in vitro study[J]. J Int Soc Prev Community Dent, 2018, 8(2): 104-109.
37 Šimundić Munitić M, Budimir A, Jakovljević S, et al. Short-term antibacterial efficacy of three bioce-ramic root canal sealers against Enterococcus faecalis biofilms[J]. Acta Stomatol Croat, 2020, 54(1): 3-9.
38 Kapralos V, Koutroulis A, Ørstavik D, et al. Antibacterial activity of endodontic sealers against plankto-nic bacteria and bacteria in biofilms[J]. J Endod, 2018, 44(1): 149-154.
39 Zordan-Bronzel CL, Tanomaru-Filho M, Rodrigues EM, et al. Cytocompatibility, bioactive potential and antimicrobial activity of an experimental calcium silicate-based endodontic sealer[J]. Int Endod J, 2019, 52(7): 979-986.
40 Tagger M, Tagger E, Tjan AH, et al. Measurement of adhesion of endodontic sealers to dentin[J]. J Endod, 2002, 28(5): 351-354.
41 Zhang W, Li Z, Peng B. Assessment of a new root canal sealer's apical sealing ability[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2009, 107(6): e79-e82.
42 Han L, Okiji T. Uptake of calcium and silicon released from calcium silicate-based endodontic materials into root canal dentine[J]. Int Endod J, 2011, 44(12): 1081-1087.
43 Atmeh AR, Chong EZ, Richard G, et al. Dentin-cement interfacial interaction: calcium silicates and polyalkenoates[J]. J Dent Res, 2012, 91(5): 454-459.
44 Xuereb M, Vella P, Damidot D, et al. In situ assessment of the setting of tricalcium silicate-based sea-lers using a dentin pressure model[J]. J Endod, 2015, 41(1): 111-124.
45 Donnermeyer D, Bürklein S, Dammaschke T, et al. Endodontic sealers based on calcium silicates: a systematic review[J]. Odontology, 2019, 107(4): 421-436.
46 Srivastava A, Yadav DS, Rao M, et al. Evaluation of push-out bond strength of BioRoot RCS and AH Plus after using different irrigants: an in vitro study[J]. J Conserv Dent, 2020, 23(1): 26-31.
47 Yaduka P, Kataki R, Roy D, et al. Effects of radiation therapy on the dislocation resistance of root canal sealers applied to dentin and the sealer-dentin interface: a pilot study[J]. Restor Dent Endod, 2021, 46(2): e22.
48 Donnermeyer D, Dornseifer P, Schäfer E, et al. The push-out bond strength of calcium silicate-based endodontic sealers[J]. Head Face Med, 2018, 14(1): 13.
49 Gupta R, Kewalramani R. In-vitro evaluation of microleakage of bioceramic root-end filling materials: a spectrophotometric study[J]. J Oral Biol Craniofac Res, 2021, 11(2): 330-333.
50 Dastorani M, Malekpour B, AminSobhani M, et al. Comparison of bacterial microleakage of three bioactive endodontic sealers in simulated underwater diving and aviation conditions[J]. BMC Oral Health, 2021, 21(1): 345.
51 Caceres C, Larrain MR, Monsalve M, et al. Denti-nal tubule penetration and adaptation of bio-C sealer and AH-plus: a comparative SEM evaluation[J]. Eur Endod J, 2021, 6(2): 216-220.
52 Uzunoglu‑Özyürek E, Erdoğan Ö, Aktemur Türker S. Effect of calcium hydroxide dressing on the dentinal tubule penetration of 2 different root canal sea-lers: a confocal laser scanning microscopic study[J]. J Endod, 2018, 44(6): 1018-1023.
53 Mendes AT, Silva PBD, Só BB, et al. Evaluation of physicochemical properties of new calcium silicate-based sealer[J]. Braz Dent J, 2018, 29(6): 536-540.
54 Poggio C, Dagna A, Ceci M, et al. Solubility and pH of bioceramic root canal sealers: a comparative study[J]. J Clin Exp Dent, 2017, 9(10): e1189-e1194.
55 Torres FFE, Zordan-Bronzel CL, Guerreiro-Tanomaru JM, et al. Effect of immersion in distilled water or phosphate-buffered saline on the solubility, volumetric change and presence of voids within new calcium silicate-based root canal sealers[J]. Int Endod J, 2020, 53(3): 385-391.
56 Borges RP, Sousa-Neto MD, Versiani MA, et al. Changes in the surface of four calcium silicate-containing endodontic materials and an epoxy resin-based sealer after a solubility test[J]. Int Endod J, 2012, 45(5): 419-428.
57 Viapiana R, Flumignan DL, Guerreiro-Tanomaru JM, et al. Physicochemical and mechanical properties of zirconium oxide and niobium oxide modified Portland cement-based experimental endodontic sea-lers[J]. Int Endod J, 2014, 47(5): 437-448.
58 Wilcox LR, Krell KV, Madison S, et al. Endodontic retreatment: evaluation of gutta-percha and sealer removal and canal reinstrumentation[J]. J Endod, 1987, 13(9): 453-457.
59 Oltra E, Cox TC, LaCourse MR, et al. Retreatability of two endodontic sealers, EndoSequence BC Sealer and AH Plus: a micro-computed tomographic comparison[J]. Restor Dent Endod, 2017, 42(1): 19-26.
60 Crozeta BM, Lopes FC, Menezes Silva R, et al. Retreatability of BC Sealer and AH Plus root canal sealers using new supplementary instrumentation protocol during non-surgical endodontic retreatment[J]. Clin Oral Investig, 2021, 25(3): 891-899.
61 Simsek N, Keles A, Ahmetoglu F, et al. Comparison of different retreatment techniques and root canal sea-lers: a scanning electron microscopic study[J]. Braz Oral Res, 2014, 28: S1806-S83242014000100221.
62 Zhekov KI, Stefanova VP. Retreatability of bio- ceramic endodontic sealers: a review[J]. Folia Med (Plovdiv), 2020, 62(2): 258-264.
63 Elbahary S, Bercovich R, Flaisher-Salem N, et al. Quantifying coronal primary tooth discoloration caused by different pulpotomy materials[J]. J Clin Pediatr Dent, 2020, 44(3): 142-147.
64 Nagas E, Ertan A, Eymirli A, et al. Tooth discolo-ration induced by different calcium silicate-based cements: a two-year spectrophotometric and photographic evaluation in vitro [J]. J Clin Pediatr Dent, 2021, 45(2): 112-116.
65 Kohli MR, Yamaguchi M, Setzer FC, et al. Spectrophotometric analysis of coronal tooth discoloration induced by various bioceramic cements and other endodontic materials[J]. J Endod, 2015, 41(11): 1862-1866.
66 Topçuoğlu HS, Tuncay Ö, Karataş E, et al. In vitro fracture resistance of roots obturated with epoxy resin-based, mineral trioxide aggregate-based, and bioceramic root canal sealers[J]. J Endod, 2013, 39(12): 1630-1633.
67 Mohammed YT, Al-Zaka IM. Fracture resistance of endodontically treated teeth obturated with different root canal sealers (a comparative study)[J]. J Conte-mp Dent Pract, 2020, 21(5): 490-493.
68 Roizenblit RN, Soares FO, Lopes RT, et al. Root canal filling quality of mandibular molars with EndoSequence BC and AH Plus sealers: a micro-CT study[J]. Aust Endod J, 2020, 46(1): 82-87.
69 Graunaite I, Skucaite N, Lodiene G, et al. Effect of resin-based and bioceramic root canal sealers on postoperative pain: a split-mouth randomized controlled trial[J]. J Endod, 2018, 44(5): 689-693.
70 Yu YH, Kushnir L, Kohli M, et al. Comparing the incidence of postoperative pain after root canal fil-ling with warm vertical obturation with resin-based sealer and sealer-based obturation with calcium silicate-based sealer: a prospective clinical trial[J]. Clin Oral Investig, 2021, 25(8): 5033-5042.
71 Bel Haj Salah K, Jaâfoura S, Tlili M, et al. Outcome of root canal treatment of necrotic teeth with apical periodontitis filled with a bioceramic-based sealer[J]. Int J Dent, 2021, 2021: 8816628.
72 Komabayashi T, Colmenar D, Cvach N, et al. Comprehensive review of current endodontic sealers[J]. Dent Mater J, 2020, 39(5): 703-720.
73 Sanz JL, Rodríguez-Lozano FJ, Llena C, et al. Bioactivity of bioceramic materials used in the dentin-pulp complex therapy: a systematic review[J]. Materials (Basel), 2019, 12(7): E1015.
[1] 张曦丹,孙吉宇,付馨靓,甘雪琦. 介孔硅酸钙纳米材料在牙体牙髓及颅颌面修复领域的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 476-482.
[2] 宁晨曦,李霞. 根管封闭剂影响牙根抗折性的研究进展[J]. 国际口腔医学杂志, 2020, 47(6): 711-716.
[3] 邓雪阳,潘兰兰,胡婷,李文华,向学熔. 钛合金表面氧化石墨烯涂层的制备[J]. 国际口腔医学杂志, 2018, 45(5): 539-545.
[4] 彭俐, 王祖华. iRoot SP的理化性质和生物学性能[J]. 国际口腔医学杂志, 2018, 45(1): 78-84.
[5] 聂蕾. 口腔贱金属合金修复体的生物相容性试验[J]. 国际口腔医学杂志, 2015, 42(1): 79-93.
[6] 赵惠1 李潇2 金柱坤2 杨凯2. 影响种植支架材料生物相容性的因素[J]. 国际口腔医学杂志, 2014, 41(3): 341-346.
[7] 李晓宁综述 樊明文 杨雪超审校. 牙髓病治疗新材料BioAggregate的研究进展[J]. 国际口腔医学杂志, 2013, 40(4): 471-472.
[8] 王传勇综述 李伟 蒋丽审校. 生物陶瓷表面蛋白吸附的研究进展[J]. 国际口腔医学杂志, 2012, 39(4): 550-553.
[9] 邓霞1 夏熹2. 纳米羟磷灰石-脂肪族聚酯酰胺复合材料对成骨细胞的生物学作用[J]. 国际口腔医学杂志, 2012, 39(1): 33-36.
[10] 赵耀 刘嘉俊综述 孟玉坤审校. 牙科合金腐蚀行为的研究进展[J]. 国际口腔医学杂志, 2011, 38(3): 339-342.
[11] 卫文娟综述 孙迎春,高平审校 . 瓷贴面修复临床应用的研究进展[J]. 国际口腔医学杂志, 2010, 37(5): 604-607.
[12] 朱超综述 蒋欣泉,张志愿审校. 丝蛋白作为骨组织工程支架材料的研究进展 [J]. 国际口腔医学杂志, 2010, 37(5): 541-543.
[13] 徐玮综述 赵克, 张新平审校. 牙科镍钛形状记忆合金的表面改性[J]. 国际口腔医学杂志, 2010, 37(02): 221-221~224.
[14] 唐翀,宣鸣. 软骨组织工程支架材料的研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): -.
[15] 刘志东,任吉芳,. 根管封闭剂基因毒性的检测[J]. 国际口腔医学杂志, 2008, 35(S1): -.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张新春. 桩冠修复与无髓牙的保护[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 王昆润. 长期单侧鼻呼吸对头颅发育有不利影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[3] 彭国光. 颈淋巴清扫术中颈交感神经干的解剖变异[J]. 国际口腔医学杂志, 1999, 26(05): .
[4] 杨凯. 淋巴化疗的药物运载系统及其应用现状[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 康非吾. 种植义齿下部结构生物力学研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 柴枫. 可摘局部义齿用Co-Cr合金的激光焊接[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 孟姝,吴亚菲,杨禾. 伴放线放线杆菌产生的细胞致死膨胀毒素及其与牙周病的关系[J]. 国际口腔医学杂志, 2005, 32(06): 458 -460 .
[8] 费晓露,丁一,徐屹. 牙周可疑致病菌对口腔黏膜上皮的粘附和侵入[J]. 国际口腔医学杂志, 2005, 32(06): 452 -454 .
[9] 赵兴福,黄晓晶. 变形链球菌蛋白组学研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .
[10] 庞莉苹,姚江武. 抛光和上釉对陶瓷表面粗糙度、挠曲强度及磨损性能的影响[J]. 国际口腔医学杂志, 2008, 35(S1): .