国际口腔医学杂志 ›› 2024, Vol. 51 ›› Issue (6): 785-792.doi: 10.7518/gjkq.2024080

• 综述 • 上一篇    

金属基纳米粒子在控制根管感染中的应用

董尚兰(),冷沙,郑庆华,张岚,黄定明()   

  1. 口腔疾病防治全国重点实验室 国家口腔医学中心 国家口腔疾病临床医学研究中心四川大学华西口腔医院牙体牙髓病科 成都 610041
  • 收稿日期:2023-12-28 修回日期:2024-04-05 出版日期:2024-11-01 发布日期:2024-11-04
  • 通讯作者: 黄定明
  • 作者简介:董尚兰,硕士,Email:dongshanglan@126.com
  • 基金资助:
    四川省自然科学基金(面上项目)(2022NSFSC0380)

Application of metal-based nanoparticles in controlling root canal infections

Shanglan Dong(),Sha Leng,Qinghua Zheng,Lan Zhang,Dingming Huang()   

  1. State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2023-12-28 Revised:2024-04-05 Online:2024-11-01 Published:2024-11-04
  • Contact: Dingming Huang
  • Supported by:
    General Program Natural Science Foundation of Sichuan Province(2022NSFSC0380)

摘要:

金属基纳米粒子具有良好的理化特性、生物相容性,以及特殊的光学和磁性能,广泛应用于口腔医学领域。金属基纳米材料可通过多种机制产生抗菌性能,包括氧化应激反应,直接破坏细菌细胞壁及细胞膜,以及释放金属离子等。根管治疗的目标是彻底消除根管系统内的感染,金属基纳米粒子可作为根管冲洗液、诊间药物和根管充填材料在根管治疗中发挥抗菌作用。目前在牙髓病学中有关银纳米粒子的研究比较充分。与传统的根管治疗材料相比,金属基纳米粒子具有更优良的抗菌表现。本综述为利用金属纳米粒子开发新的控制根管感染措施提供了思路和参考。

关键词: 金属基纳米粒子, 根管感染, 根管治疗

Abstract:

Metal-based nanoparticles are extensively used in dentistry because of their good physicochemical properties, biocompatibility, and special optical and magnetic properties. Metal-based nanomaterials can exhibit antimicrobial properties through various mechanisms such as oxidative stress induction, direct destruction of bacterial cell walls and cell membranes, and release of metal ions. The goal of root canal treatment is to completely eliminate infection within the root canal system. Metal-based nanomaterials can be used as irrigants, intracanal medications, and filling materials. Silver nanoparticles are currently well studied in endodontics. Metal-based nanoparticles have superior antimicrobial performance to conventional endodontic materials. This review provides ideas and references for the development of new measures to control root canal infections by using metal nanoparticles.

Key words: metal-based nanoparticles, root canal infection, root canal therapy

中图分类号: 

  • R781.05
1 Rauscher H, Sokull-Klüttgen B, Stamm H. The European Commission’s recommendation on the definition of nanomaterial makes an impact[J]. Nanoto-xicology, 2013, 7(7): 1195-1197.
2 Venugopal J, Prabhakaran MP, Low S, et al. Nanotechnology for nanomedicine and delivery of drugs[J]. Curr Pharm Des, 2008, 14(22): 2184-2200.
3 Curtis A, Wilkinson C. Nantotechniques and app-roaches in biotechnology[J]. Trends Biotechnol, 2001, 19(3): 97-101.
4 Cushing BL, Kolesnichenko VL, O’Connor CJ. Recent advances in the liquid-phase syntheses of inorganic nanoparticles[J]. Chem Rev, 2004, 104(9): 3893-3946.
5 Wu CT, Chang J, Fan W. Bioactive mesoporous calcium-silicate nanoparticles with excellent minerali-zation ability, osteostimulation, drug-delivery and antibacterial properties for filling apex roots of teeth[J]. J Mater Chem, 2012, 22(33): 16801-16809.
6 Makabenta JMV, Nabawy A, Li CH, et al. Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections[J]. Nat Rev Microbiol, 2021, 19(1): 23-36.
7 Hajipour MJ, Fromm KM, Ashkarran AA, et al. Antibacterial properties of nanoparticles[J]. Trends Biotechnol, 2012, 30(10): 499-511.
8 D’Autréaux B, Toledano MB. ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis[J]. Nat Rev Mol Cell Biol, 2007, 8(10): 813-824.
9 Vimbela GV, Ngo SM, Fraze C, et al. Antibacterial properties and toxicity from metallic nanomaterials[J]. Int J Nanomedicine, 2017, 12: 3941-3965.
10 Yang BW, Chen Y, Shi JL. Reactive oxygen species (ROS)-based nanomedicine[J]. Chem Rev, 2019, 119(8): 4881-4985.
11 Bi XL, Bai Q, Liang MM, et al. Silver peroxide nanoparticles for combined antibacterial sonodynamic and photothermal therapy[J]. Small, 2022, 18(2): e2104160.
12 Gupta A, Mumtaz S, Li CH, et al. Combatting antibiotic-resistant bacteria using nanomaterials[J]. Chem Soc Rev, 2019, 48(2): 415-427.
13 Zheng YK, Wei M, Wu HB, et al. Antibacterial me-tal nanoclusters[J]. J Nanobiotechnology, 2022, 20(1): 328.
14 Matsuzaki K. Control of cell selectivity of antimicrobial peptides[J]. Biochim Biophys Acta, 2009, 1788(8): 1687-1692.
15 Hajipour MJ, Saei AA, Walker ED, et al. Nanotechnology for targeted detection and removal of bacteria: opportunities and challenges[J]. Adv Sci, 2021, 8(21): e2100556.
16 Maťátková O, Michailidu J, Miškovská A, et al. Antimicrobial properties and applications of metal nanoparticles biosynthesized by green methods[J]. Biotechnol Adv, 2022, 58: 107905.
17 Yuan PY, Ding X, Yang YY, et al. Metal nanoparticles for diagnosis and therapy of bacterial infection[J]. Adv Healthc Mater, 2018, 7(13): e1701392.
18 Bukhari S, Kim D, Liu Y, et al. Novel endodontic disinfection approach using catalytic nanoparticles[J]. J Endod, 2018, 44(5): 806-812.
19 Naha PC, Liu Y, Hwang G, et al. Dextran-coated iron oxide nanoparticles as biomimetic catalysts for localized and pH-activated biofilm disruption[J]. ACS Nano, 2019, 13(5): 4960-4971.
20 Natan M, Banin E. From nano to micro: using nano-technology to combat microorganisms and their multidrug resistance[J]. FEMS Microbiol Rev, 2017, 41(3): 302-322.
21 van Wolferen M, Orell A, Albers SV. Archaeal biofilm formation[J]. Nat Rev Microbiol, 2018, 16(11): 699-713.
22 Flemming HC, Wingender J, Szewzyk U, et al. Biofilms: an emergent form of bacterial life[J]. Nat Rev Microbiol, 2016, 14(9): 563-575.
23 Gupta D, Singh A, Khan AU. Nanoparticles as efflux pump and biofilm inhibitor to rejuvenate bactericidal effect of conventional antibiotics[J]. Nanoscale Res Lett, 2017, 12(1): 454.
24 Khan ST, Ahmad J, Ahamed M, et al. Zinc oxide and titanium dioxide nanoparticles induce oxidative stress, inhibit growth, and attenuate biofilm formation activity of Streptococcus mitis [J]. J Biol Inorg Chem, 2016, 21(3): 295-303.
25 Koo H, Allan RN, Howlin RP, et al. Targeting microbial biofilms: current and prospective therapeutic strategies[J]. Nat Rev Microbiol, 2017, 15(12): 740-755.
26 Zheng KY, Setyawati MI, Leong DT, et al. Antimicrobial gold nanoclusters[J]. ACS Nano, 2017, 11(7): 6904-6910.
27 Cheon JY, Kim SJ, Rhee YH, et al. Shape-dependent antimicrobial activities of silver nanoparticles[J]. Int J Nanomedicine, 2019, 14: 2773-2780.
28 Długosz O, Sochocka M, Ochnik M, et al. Metal and bimetallic nanoparticles: flow synthesis, bioactivity and toxicity[J]. J Colloid Interface Sci, 2021, 586: 807-818.
29 Zhong YY, Zheng XT, Zhao SQ, et al. Stimuli-activable metal-bearing nanomaterials and precise on-demand antibacterial strategies[J]. ACS Nano, 2022, 16(12): 19840-19872.
30 Sun HJ, Gao N, Dong K, et al. Graphene quantum dots-band-aids used for wound disinfection[J]. ACS Nano, 2014, 8(6): 6202-6210.
31 Betancourt P, Brocal N, Sans-Serramitjana E, et al. Functionalized nanoparticles activated by photodynamic therapy as an antimicrobial strategy in endo-dontics: a scoping review[J]. Antibiotics, 2021, 10(9): 1064.
32 Ambalavanan N, Kavitha M, Jayakumar S, et al. Comparative evaluation of bactericidal effect of silver nanoparticle in combination with Nd-YAG laser against Enterococcus faecalis: an in vitro study[J]. J Contemp Dent Pract, 2020, 21(10): 1141-1145.
33 Afkhami F, Akbari S, Chiniforush N. Entrococcus faecalis elimination in root canals using silver nanoparticles, photodynamic therapy, diode laser, or laser-activated nanoparticles: an in vitro study[J]. J Endod, 2017, 43(2): 279-282.
34 Quan KC, Zhang ZX, Chen H, et al. Artificial channels in an infectious biofilm created by magnetic nanoparticles enhanced bacterial killing by antibio-tics[J]. Small, 2019, 15(39): e1902313.
35 Ertem E, Gutt B, Zuber F, et al. Core-shell silver nanoparticles in endodontic disinfection solutions enable long-term antimicrobial effect on oral biofilms[J]. ACS Appl Mater Interfaces, 2017, 9(40): 34762-34772.
36 Ioannidis K, Niazi S, Mylonas P, et al. The synthesis of nano silver-graphene oxide system and its efficacy against endodontic biofilms using a novel tooth model[J]. Dent Mater, 2019, 35(11): 1614-1629.
37 Martinez-Andrade JM, Avalos-Borja M, Vilchis-Nestor AR, et al. Dual function of EDTA with silver nanoparticles for root canal treatment-a novel mo-dification[J]. PLoS One, 2018, 13(1): e0190866.
38 Charannya S, Duraivel D, Padminee K, et al. Comparative evaluation of antimicrobial efficacy of silver nanoparticles and 2% chlorhexidine gluconate when used alone and in combination assessed using agar diffusion method: an in vitro study[J]. Contemp Clin Dent, 2018, 9(): S204-S209.
39 Afkhami F, Ahmadi P, Chiniforush N, et al. Effect of different activations of silver nanoparticle irri-gants on the elimination of Enterococcus faecalis [J]. Clin Oral Investig, 2021, 25(12): 6893-6899.
40 Hendi SS, Amiri N, Poormoradi B, et al. Antibacterial effects of erbium chromium laser along with/without silver nanoparticles in root canals infected by Enterococcus faecalis [J]. Int J Dent, 2021, 2021: 6659146.
41 Kushwaha V, Yadav RK, Tikku AP, et al. Comparative evaluation of antibacterial effect of nanoparticles and lasers against endodontic microbiota: an in vitro study[J]. J Clin Exp Dent, 2018, 10(12): e1155-e1160.
42 Rodrigues CT, de Andrade FB, de Vasconcelos LRSM, et al. Antibacterial properties of silver nano-particles as a root canal irrigant against Enterococcus faecalis biofilm and infected dentinal tubules[J]. Int Endod J, 2018, 51(8): 901-911.
43 Keskin NB, Aydın ZU, Uslu G, et al. Antibacterial efficacy of copper-added chitosan nanoparticles: a confocal laser scanning microscopy analysis[J]. Odontology, 2021, 109(4): 868-873.
44 Shrestha A, Shi ZL, Neoh KG, et al. Nanoparticulates for antibiofilm treatment and effect of aging on its antibacterial activity[J]. J Endod, 2010, 36(6): 1030-1035.
45 de Almeida J, Cechella BC, Bernardi AV, et al. Effectiveness of nanoparticles solutions and conventional endodontic irrigants against Enterococcus faecalis biofilm[J]. Indian J Dent Res, 2018, 29(3): 347-351.
46 Monzavi A, Eshraghi S, Hashemian R, et al. In vitro and ex vivo antimicrobial efficacy of nano-MgO in the elimination of endodontic pathogens[J]. Clin Oral Investig, 2015, 19(2): 349-356.
47 Liu T, Aman A, Ainiwaer M, et al. Evaluation of the anti-biofilm effect of poloxamer-based thermore-versible gel of silver nanoparticles as a potential me-dication for root canal therapy[J]. Sci Rep, 2021, 11(1): 12577.
48 Nayyar P, Sethi A, Thakur D, et al. Antibacterial effect of silver nanoparticle gel as an intracanal medicament in combination with other medicaments against Enterococcus faecalis: an in vitro study[J]. J Pharm Bioallied Sci, 2021, 13(): S408-S411.
49 Balto H, Bukhary S, Al-Omran O, et al. Combined effect of a mixture of silver nanoparticles and cal-cium hydroxide against Enterococcus faecalis biofilm[J]. J Endod, 2020, 46(11): 1689-1694.
50 Guerreiro-Tanomaru JM, Pereira KF, Nascimento CA, et al. Use of nanoparticulate zinc oxide as intracanal medication in endodontics: pH and antimicrobial activity[J]. Acta Odontol Latinoam, 2013, 26(3): 144-148.
51 Dkhil MA, Diab MSM, Aljawdah HMA, et al. Neuro-biochemical changes induced by zinc oxide nano-particles[J]. Saudi J Biol Sci, 2020, 27(10): 2863-2867.
52 Yousefshahi H, Aminsobhani M, Shokri M, et al. Anti-bacterial properties of calcium hydroxide in combination with silver, copper, zinc oxide or magnesium oxide[J]. Eur J Transl Myol, 2018, 28(3): 7545.
53 Sy K, Agossa K, Maton M, et al. How adding chlorhexidine or metallic nanoparticles affects the antimicrobial performance of calcium hydroxide paste as an intracanal medication: an in vitro study[J]. Antibiotics, 2021, 10(11): 1352.
54 Sun Q, Duan MT, Fan W, et al. Ca-Si mesoporous nanoparticles with the optimal Ag-Zn ratio inhibit the Enterococcus faecalis infection of teeth through dentinal tubule infiltration: an in vitro and in vivo study[J]. J Mater Chem B, 2021, 9(9): 2200-2211.
55 Zhu J, Liang RZ, Sun C, et al. Effects of nanosilver and nanozinc incorporated mesoporous calcium-silicate nanoparticles on the mechanical properties of dentin[J]. PLoS One, 2017, 12(8): e0182583.
56 Fan W, Wu YJ, Ma TJ, et al. Substantivity of Ag-Ca-Si mesoporous nanoparticles on dentin and its ability to inhibit Enterococcus faecalis [J]. J Mater Sci Mater Med, 2016, 27(1): 16.
57 Leng DY, Li Y, Zhu J, et al. The antibiofilm activity and mechanism of nanosilver- and nanozinc-incorporated mesoporous calcium-silicate nanoparticles[J]. Int J Nanomedicine, 2020, 15: 3921-3936.
58 Peters LB, Wesselink PR, Moorer WR. The fate and the role of bacteria left in root dentinal tubules[J]. Int Endod J, 1995, 28(2): 95-99.
59 Sjögren U, Figdor D, Persson S, et al. Influence of infection at the time of root filling on the outcome of endodontic treatment of teeth with apical perio-dontitis[J]. Int Endod J, 1997, 30(5): 297-306.
60 Seung J, Weir MD, Melo MAS, et al. A modified resin sealer: physical and antibacterial properties[J]. J Endod, 2018, 44(10): 1553-1557.
61 Wang JY, Du LL, Fu YM, et al. ZnO nanoparticles inhibit the activity of Porphyromonas gingivalis and Actinomyces naeslundii and promote the mineralization of the cementum[J]. BMC Oral Health, 2019, 19(1): 84.
62 Mohan A, Dipallini S, Lata S, et al. Oxidative stress induced antimicrobial efficacy of chitosan and silver nanoparticles coated Gutta-percha for endodontic applications[J]. Mater Today Chem, 2020, 17: 100299.
63 Corrêa JM, Mori M, Sanches HL, et al. Silver nanoparticles in dental biomaterials[J]. Int J Biomater, 2015, 2015: 485275.
64 Schraufnagel DE. The health effects of ultrafine particles[J]. Exp Mol Med, 2020, 52(3): 311-317.
65 Lanone S, Rogerieux F, Geys J, et al. Comparative toxicity of 24 manufactured nanoparticles in human alveolar epithelial and macrophage cell lines[J]. Part Fibre Toxicol, 2009, 6: 14.
66 George S, Pokhrel S, Xia T, et al. Use of a rapid cytotoxicity screening approach to engineer a safer zinc oxide nanoparticle through iron doping[J]. ACS Nano, 2010, 4(1): 15-29.
67 Karimi S, Mahdavi Shahri M. Medical and cytoto-xicity effects of green synthesized silver nanoparticles using Achillea millefolium extract on MOLT-4 lymphoblastic leukemia cell line[J]. J Med Virol, 2021, 93(6): 3899-3906.
68 Rani P, Varma RS, Singh K, et al. Catalytic and antimicrobial potential of green synthesized Au and Au@Ag core-shell nanoparticles[J]. Chemosphere, 2023, 317: 137841.
69 Panáček A, Kvítek L, Smékalová M, et al. Bacterial resistance to silver nanoparticles and how to overcome it[J]. Nat Nanotechnol, 2018, 13(1): 65-71.
70 Mann R, Holmes A, McNeilly O, et al. Evolution of biofilm-forming pathogenic bacteria in the presence of nanoparticles and antibiotic: adaptation phenomena and cross-resistance[J]. J Nanobiotechnology, 2021, 19(1): 291.
[1] 纪寅飞, 张岚, 黄定明. 微创髓腔通路对根管治疗过程的影响[J]. 国际口腔医学杂志, 2024, 51(5): 558-564.
[2] 高宇天,苏勤. 酸性氧化电位水在根管治疗中的研究与应用[J]. 国际口腔医学杂志, 2023, 50(4): 401-406.
[3] 汪牡丹,宋东哲,黄定明. 开髓洞型对患牙根管治疗术后抗折性能影响的研究进展[J]. 国际口腔医学杂志, 2023, 50(2): 186-194.
[4] 王璐璇,侯本祥. 根管内氢氧化钙残留对根管治疗的影响[J]. 国际口腔医学杂志, 2022, 49(3): 367-372.
[5] 戢晓,景钫淇,李雅,薛晶. 根管预备顺序的数据模拟优化研究[J]. 国际口腔医学杂志, 2022, 49(1): 37-47.
[6] 何蓉,刘学军,周宇琨. 光子引导的光声流效应在根管荡洗中应用的系统评价[J]. 国际口腔医学杂志, 2021, 48(6): 644-655.
[7] 邢桂琪,郭林溪,苏勤. 根管治疗后疾病的综合评估和治疗决策[J]. 国际口腔医学杂志, 2021, 48(5): 579-584.
[8] 彭玮琪,高原,徐欣. 髓腔通路设计的微创理念及其研究进展[J]. 国际口腔医学杂志, 2021, 48(4): 433-438.
[9] 李米雪子,张琛. 椅旁计算机辅助设计/计算机辅助制作髓腔固位冠修复根管治疗后磨牙的临床考量[J]. 国际口腔医学杂志, 2021, 48(3): 274-279.
[10] 谭凯璇,李帆,张利娟,李姗姗,卢洁,张颖,杨芳. 根管再治疗并发皮下气肿1例[J]. 国际口腔医学杂志, 2020, 47(5): 563-566.
[11] 唐蓓,赵文俊,王虎,郑广宁,游梦. 根管超填导致下牙槽神经损伤2例[J]. 国际口腔医学杂志, 2020, 47(3): 293-296.
[12] 许庆安,樊明文. 非器械根管治疗与多声波超洁净系统[J]. 国际口腔医学杂志, 2019, 46(5): 522-525.
[13] 黄丽东, 宫玮玉, 董艳梅. 根管冲洗的研究进展[J]. 国际口腔医学杂志, 2018, 45(4): 465-472.
[14] 马艳群, 李红, 侯本祥. 根尖周膜新附着的研究进展[J]. 国际口腔医学杂志, 2018, 45(3): 331-334.
[15] 黄晓想, 张茹, 侯本祥. 恒牙根尖区解剖结构对根管治疗的影响[J]. 国际口腔医学杂志, 2017, 44(3): 261-266.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!