国际口腔医学杂志 ›› 2022, Vol. 49 ›› Issue (4): 380-385.doi: 10.7518/gjkq.2022057

• 牙发育专栏 • 上一篇    下一篇

时钟基因在牙齿发育中表达分布与调控机制的研究进展

赵曼竹1(),宋锦璘2()   

  1. 1.重庆医科大学附属口腔医院口腔综合科 重庆 401147
    2.重庆医科大学附属口腔医院 重庆 401147
  • 收稿日期:2021-10-19 修回日期:2022-03-02 出版日期:2022-07-01 发布日期:2022-06-28
  • 通讯作者: 宋锦璘
  • 作者简介:赵曼竹,博士,Email:501252@hospital.cqmu.edu.cn
  • 基金资助:
    国家自然科学基金青年科学基金(82000997);重庆自然科学基金面上项目(cstc2020jcyj-msxmX0018);2019年重庆市研究生导师团队资助项目(dstd201903)

Research progress on expression distribution and regulation mechanism of clock genes in tooth development

Zhao Manzhu1(),Song Jinlin2()   

  1. 1.Dept. of General Dentistry, Hospital of Stomatology, Chongqing Medical University, Chong-qing 401147, China
    2.Hospital of Stomatology, Chongqing Medical University, Chongqing 401147, China
  • Received:2021-10-19 Revised:2022-03-02 Online:2022-07-01 Published:2022-06-28
  • Contact: Jinlin Song
  • Supported by:
    National Natural Science Foundation of China Youth Science Foundation(82000997);Ge-neral Project of Chongqing Natural Science Foundation(cstc2020jcyj-msxmX0018);Project of Chongqing Graduate Tutor Team in 2019(dstd201903)

摘要:

时间生物学的出现将生命科学研究由静态思维转向了动态思维。近年来时钟基因在口腔医学领域,尤其是牙齿发育中的调控作用与机制越来越受到学者们的关注。生物节律在牙齿硬组织中留下的痕迹包括釉柱横纹、芮氏线、牙本质冯·埃布纳线等,但时钟基因如何参与牙齿硬组织的生成调控及其分子机制仍未被完全揭示,一直是该领域研究的热点。目前的研究主要聚焦于时钟基因在牙发育过程中的动态表达规律和在牙齿硬组织矿化生成过程中的作用与机制,本文就时钟基因在牙齿发育中的表达分布特点、调控作用及机制的研究进展作一综述。

关键词: 时钟基因, 牙齿发育, 表达, 矿化, 调控机制

Abstract:

The emergence of chronobiology has brought the change from static thinking to dynamic thinking in life s-ciences. The effects and mechanism of clock genes in dentistry, especially those involved in tooth development, have been the focus of research. Dental hard tissue shows the characteristics of clock rhythm. The phenomenon of incremental growth lines in tooth (e.g., horizontal pattern of glaze column, Retzius and von Ebner lines) was the histologic evidence for this condition. However, the molecular mechanism of how clock genes participate in the regulation of periodic mine-ralization of dental hard tissues still requires elucidation and has long been one of the research focuses in this field. Recent studies have focused on the dynamic expression and regulation of clock genes in tooth morphogenesis, especially in dental hard tissue mineralization. This paper aims to review the current development in the studies of the expression distribution, role, and molecular mechanism of clock genes in tooth development.

Key words: clock gene, tooth development, expression, mineralization, regulation mechanism

中图分类号: 

  • R 78

图1

核心时钟基因的反馈抑制理论示意图"

图2

时钟基因和时钟控制基因的信号调控通路示意图"

1 Allada R, Bass J. Circadian mechanisms in medicine[J]. N Engl J Med, 2021, 384(6): 550-561.
2 Kuhlman SJ, Craig LM, Duffy JF. Introduction to chronobiology[J]. Cold Spring Harb Perspect Biol, 2018, 10(9): a033613.
3 Huang RC. The discoveries of molecular mechanisms for the circadian rhythm: the 2017 Nobel Prize in physiology or medicine[J]. Biomed J, 2018, 41(1): 5-8.
4 Lacruz RS, Hacia JG, Bromage TG, et al. The circadian clock modulates enamel development[J]. J Biol Rhythms, 2012, 27(3): 237-245.
5 Smith TM. Experimental determination of the perio-dicity of incremental features in enamel[J]. J Anat, 2006, 208(1): 99-113.
6 Iinuma Y, Suzuki M, Yokoyama M, et al. Daily incremental lines in sika deer (Cervus Nippon) dentine[J]. J Vet Med Sci, 2002, 64(9): 791-795.
7 Yamamoto T, Domon T, Takahashi S, et al. Twisted plywood structure of an alternating lamellar pattern in cellular cementum of human teeth[J]. Anat Embryol (Berl), 2000, 202(1): 25-30.
8 Dunlap JC. Molecular bases for circadian clocks[J]. Cell, 1999, 96(2): 271-290.
9 Brown SA, Kowalska E, Dallmann R. (Re)inventing the circadian feedback loop[J]. Dev Cell, 2012, 22(3): 477-487.
10 Turek FW, Joshu C, Kohsaka A, et al. Obesity and metabolic syndrome in circadian Clock mutant mice[J]. Science, 2005, 308(5724): 1043-1045.
11 Kwon I, Choe HK, Son GH, et al. Mammalian molecular clocks[J]. Exp Neurobiol, 2011, 20(1): 18-28.
12 Okawa H, Egusa H, Nishimura I. Implications of the circadian clock in implant dentistry[J]. Dent Mater J, 2020, 39(2): 173-180.
13 Dierickx P, Vermunt MW, Muraro MJ, et al. Circa-dian networks in human embryonic stem cell-derived cardiomyocytes[J]. EMBO Rep, 2017, 18(7): 1199-1212.
14 Gallardo A, Molina A, Asenjo HG, et al. The mole-cular clock protein Bmal1 regulates cell differentiation in mouse embryonic stem cells[J]. Life Sci Al-liance, 2020, 3(5): e201900535.
15 Umemura Y, Maki I, Tsuchiya Y, et al. Human circadian molecular oscillation development using induced pluripotent stem cells[J]. J Biol Rhythms, 2019, 34(5): 525-532.
16 Kaneko H, Kaitsuka T, Tomizawa K. Response to stimulations inducing circadian rhythm in human induced pluripotent stem cells[J]. Cells, 2020, 9(3): E620.
17 Gréchez-Cassiau A, Rayet B, Guillaumond F, et al. The circadian clock component BMAL1 is a critical regulator of p21WAF1/CIP1 expression and hepatocyte proliferation[J]. J Biol Chem, 2008, 283(8): 4535-4542.
18 Kowalska E, Ripperger JA, Hoegger DC, et al. NONO couples the circadian clock to the cell cycle[J]. Proc Natl Acad Sci U S A, 2013, 110(5): 1592-1599.
19 Hassan N, McCarville K, Morinaga K, et al. Tita- nium biomaterials with complex surfaces induced aberrant peripheral circadian rhythms in bone marrow mesenchymal stromal cells[J]. PLoS One, 2017, 12(8): e0183359.
20 Samsa WE, Vasanji A, Midura RJ, et al. Deficiency of circadian clock protein BMAL1 in mice results in a low bone mass phenotype[J]. Bone, 2016, 84: 194-203.
21 Chen YJ, Xu XM, Tan Z, et al. Age-related BMAL1 change affects mouse bone marrow stromal cell proliferation and osteo-differentiation potential[J]. Arch Med Sci, 2012, 8(1): 30-38.
22 Fu L, Patel MS, Bradley A, et al. The molecular clock mediates leptin-regulated bone formation[J]. Cell, 2005, 122(5): 803-815.
23 Min HY, Kim KM, Wee G, et al. Bmal1 induces osteoblast differentiation via regulation of BMP2 expression in MC3T3-E1 cells[J]. Life Sci, 2016, 162: 41-46.
24 Zheng L, Papagerakis S, Schnell SD, et al. Expression of clock proteins in developing tooth[J]. Gene Expr Patterns, 2011, 11(3/4): 202-206.
25 Janjić K, Kurzmann C, Moritz A, et al. Core circa-dian clock gene expression in human dental pulp-derived cells in response to L-mimosine, hypoxia and echinomycin[J]. Eur J Oral Sci, 2018, 126(4): 263-271.
26 Yang K, Wang Y, Ju Y, et al. p75 neurotrophin receptor regulates differential mineralization of rat ectomesenchymal stem cells[J]. Cell Prolif, 2017, 50(1): e12290.
27 杨琨, 李骏, 丰奇昊, 等. MAGE-D1对大鼠牙胚来源外胚间充质干细胞增殖迁移能力的影响[J]. 遵义医学院学报, 2018, 41(5): 569-575.
Yang K, Li J, Feng QH, et al. The effects of MAGE-D1 on proliferation and migration of ectomesenchymal stem cells originated from rat teeth germ[J]. J Zunyi Med Univ, 2018, 41(5): 569-575.
28 Zheng L, Ehardt L, McAlpin B, et al. The tick tock of odontogenesis[J]. Exp Cell Res, 2014, 325(2): 83-89.
29 Nirvani M, Khuu C, Utheim TP, et al. Circadian rhythms and gene expression during mouse molar tooth development[J]. Acta Odontol Scand, 2017, 75(2): 144-153.
30 Ohtsuka M, Shinoda H. Ontogeny of circadian dentinogenesis in the rat incisor[J]. Arch Oral Biol, 1995, 40(6): 481-485.
31 Ohtsuka-Isoya M, Hayashi H, Shinoda H. Effect of suprachiasmatic nucleus lesion on circadian dentin increment in rats[J]. Am J Physiol Regul Integr Comp Physiol, 2001, 280(5): R1364-R1370.
32 Papakyrikos AM, Arora M, Austin C, et al. Biological clocks and incremental growth line formation in dentine[J]. J Anat, 2020, 237(2): 367-378.
33 Huang WS, Zheng XQ, Yang M, et al. PER2-media-ted ameloblast differentiation via PPARγ/AKT1/β‑ catenin axis[J]. Int J Oral Sci, 2021, 13(1): 16.
34 Satou R, Shibukawa Y, Kimura M, et al. Light conditions affect rhythmic expression of aquaporin 5 and anoctamin 1 in rat submandibular glands[J]. Heliyon, 2019, 5(11): e02792.
35 Baeza-Raja B, Eckel-Mahan K, Zhang LY, et al. p75 neurotrophin receptor is a clock gene that regulates oscillatory components of circadian and metabolic networks[J]. J Neurosci, 2013, 33(25): 10221-10234.
36 Nirvani M, Khuu C, Tulek A, et al. Transcriptomic analysis of microRNA expression in enamel-produ-cing cells[J]. Gene, 2019, 688: 193-203.
[1] 王罗丹,范红. 蝶鞍的形态学特点及其与错畸形的关系[J]. 国际口腔医学杂志, 2023, 50(6): 653-660.
[2] 王钢,陈卓. 邻面去釉后釉质表面患龋风险控制的描述性综述[J]. 国际口腔医学杂志, 2023, 50(4): 395-400.
[3] 于乐蓉,李祥伟,艾虹. 牙髓干细胞干性维持的研究进展[J]. 国际口腔医学杂志, 2023, 50(4): 463-471.
[4] 王启秋,支清惠. 釉质白垩斑治疗方法的研究进展[J]. 国际口腔医学杂志, 2022, 49(6): 717-723.
[5] 龚涛,李雨庆,周学东. 变异链球菌糖转运及其调控机制的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 506-510.
[6] 李媛媛,陈俊宇,蔡和,万乾炳. 甲状旁腺激素及甲状旁腺素相关肽在牙齿硬组织形成中的作用[J]. 国际口腔医学杂志, 2021, 48(6): 703-710.
[7] 杨佩佩,杨羽晨,张强. 尼古丁对牙槽骨破骨细胞的作用及其机制的研究进展[J]. 国际口腔医学杂志, 2020, 47(5): 616-620.
[8] 陶思颖,梁坤能,李继遥. 仿生多肽促进牙体硬组织再矿化的研究进展[J]. 国际口腔医学杂志, 2019, 46(1): 37-42.
[9] 罗惟丹, 李明云, 周学东, 程磊. 纳米羟磷灰石在牙体修复和牙髓治疗领域的应用[J]. 国际口腔医学杂志, 2018, 45(2): 192-198.
[10] 冼雪红, 蒋宏伟. 基质小泡及其与细胞骨架蛋白的关系[J]. 国际口腔医学杂志, 2018, 45(2): 204-208.
[11] 张煦, 许恩馨, 阮敏. Toll样受体9与头颈部鳞状细胞癌关系的研究进展[J]. 国际口腔医学杂志, 2017, 44(5): 596-601.
[12] 王压冲, 胡德渝, 董滢, 涂蕊, 李雪, 孔恒. 成都农村儿童患龋状况调查报告[J]. 国际口腔医学杂志, 2017, 44(1): 28-31.
[13] 陈慧, 程磊. 防龋粘接材料的研究进展[J]. 国际口腔医学杂志, 2017, 44(1): 92-97.
[14] 陈冬茹 吴莉萍. 低氧诱导因子-1α和反义低氧诱导因子-1α的研究进展[J]. 国际口腔医学杂志, 2016, 43(5): 589-593.
[15] 周凤,赵玉鸣. 磨牙-切牙釉质矿化不全的研究进展[J]. 国际口腔医学杂志, 2016, 43(4): 456-461.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王昆润. 修补颌骨缺损的新型生物学相容材料[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 陆加梅. 不可复性关节盘移位患者术前张口度与关节镜术后疗效的相关性[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 王昆润. 咀嚼口香糖对牙周组织微循环的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 宋红. 青少年牙周炎外周血分叶核粒细胞的趋化功能[J]. 国际口腔医学杂志, 1999, 26(06): .
[5] 高卫民,李幸红. 发达国家牙医学院口腔种植学教学现状[J]. 国际口腔医学杂志, 1999, 26(06): .
[6] 侯锐. 正畸患者釉白斑损害的纵向激光荧光研究[J]. 国际口腔医学杂志, 1999, 26(05): .
[7] 轩东英. 不同赋形剂对氢氧化钙抗菌效果的影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[8] 房兵. 唇腭裂新生儿前颌骨矫正方法及对上颌骨生长发育的影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[9] 杨美祥. 前牙厚度在预测上下颌牙量协调性中的作用[J]. 国际口腔医学杂志, 1999, 26(04): .
[10] 赵艳丽. 手术刀、电凝、CO_2和KTP激光对大鼠舌部创口的作用[J]. 国际口腔医学杂志, 1999, 26(04): .