国际口腔医学杂志 ›› 2017, Vol. 44 ›› Issue (6): 647-653.doi: 10.7518/gjkq.2017.06.005
程兴群, 徐欣, 周学东, 李雨庆
Cheng Xingqun, Xu Xin, Zhou Xuedong, Li Yuqing.
摘要: 环二腺嘌呤核苷酸(c-di-AMP)是在继环腺嘌呤核苷酸(cAMP)、四(五)磷酸鸟嘌呤核苷((p)ppGpp)、环二鸟嘌呤核苷酸(c-di-GMP)后新发现的一种第二信使分子,在细菌和支原体中广泛存在。c-di-AMP调控细菌多项生理活动,如细胞周期、细胞壁稳定性、细胞形态、刺激宿主免疫反应以及应对外界环境胁迫等。本文总结了信使分子c-di-AMP自发现以来的研究进展,这些信息可丰富对c-di-AMP调控作用的全面理解。同时,生物信息学分析发现在口腔常见细菌(如变异链球菌和牙龈卟啉单胞菌等)基因组中均存在编码c-di-AMP合成酶的基因,对于这一类基因的功能研究将为深入认识c-di-AMP信号系统在口腔细菌致病过程中的潜在作用提供重要线索,并为研究其在口腔细菌致病性中的调控机制开辟新天地。
中图分类号:
[1] Witte G, Hartung S, Büttner K, et al. Structural bio-chemistry of a bacterial checkpoint protein reveals diadenylate cyclase activity regulated by DNA recombination intermediates[J]. Mol Cell, 2008, 30 (2):167-178. [2] Jenny HC-Y, Don D, Oger J. Synthesis and physical characterization of bis 3’→5’ cyclic dinucleotides (NpNp): RNA polymerase inhibitors[J]. Nucleos Nucleot, 1985, 4(3):377-389. [3] Bejerano-Sagie M, Oppenheimer-Shaanan Y, Berla-tzky I, et al. A checkpoint protein that scans the chromosome for damage at the start of sporulation in Bacillus subtilis [J]. Cell, 2006, 125(4):679-690. [4] Römling U. Great times for small molecules: c-di-AMP, a second messenger candidate in Bacteria and Archaea [J]. Sci Signal, 2008, 1(33):pe39. [5] Punta M, Coggill PC, Eberhardt RY, et al. The Pfam protein families database[J]. Nucleic Acids Res, 2012, 40(Database issue):D290-D301. [6] Oppenheimer-Shaanan Y, Wexselblatt E, Katzhendler J, et al. c-di-AMP reports DNA integrity during sporulation in Bacillus subtilis [J]. EMBO Rep, 2011, 12(6):594-601. [7] Luo Y, Helmann JD. Analysis of the role of Bacillus subtilis σ(M) in β-lactam resistance reveals an essen-tial role for c-di-AMP in peptidoglycan homeostasis [J]. Mol Microbiol, 2012, 83(3):623-639. [8] Mehne FM, Schröder-Tittmann K, Eijlander RT, et al. Control of the diadenylate cyclase CdaS in Baci - llus subtilis : an autoinhibitory domain limits cyclic di-AMP production[J]. J Biol Chem, 2014, 289 (30):21098-21107. [9] Woodward JJ, Iavarone AT, Portnoy DA. c-di-AMP secreted by intracellular Listeria monocytogenes activates a host typeⅠinterferon response[J]. Science, 2010, 328(5986):1703-1705. [10] Schwartz KT, Carleton JD, Quillin SJ, et al. Hy-perinduction of host beta interferon by a Listeria monocytogenes strain naturally overexpressing the multidrug efflux pump MdrT[J]. Infect Immun, 2012, 80(4):1537-1545. [11] Whiteley AT, Garelis NE, Peterson BN, et al. c-di-AMP modulates Listeria monocytogenes central metabolism to regulate growth, antibiotic resistance and osmoregulation[J]. Mol Microbiol, 2017, 104(2): 212-233. [12] Corrigan RM, Abbott JC, Burhenne H, et al. c-di-AMP is a new second messenger in Staphylococcus aureus with a role in controlling cell size and enve-lope stress[J]. PLoS Pathog, 2011, 7(9):e1002217. [13] Kamegaya T, Kuroda K, Hayakawa Y. Identification of a Streptococcus pyogenes SF370 gene involved in production of c-di-AMP[J]. Nagoya J Med Sci, 2011, 73(1/2):49-57. [14] Bai Y, Yang J, Zhou X, et al. Mycobacterium tube-rculosis Rv3586(DacA) is a diadenylate cyclase that converts ATP or ADP into c-di-AMP[J]. PLoS One, 2012, 7(4):e35206. [15] Yang J, Bai Y, Zhang Y, et al. Deletion of the cyclic di-AMP phosphodiesterase gene(cnpB) in Mycobac-terium tuberculosis leads to reduced virulence in a mouse model of infection[J]. Mol Microbiol, 2014, 93(1):65-79. [16] Smith WM, Pham TH, Lei L, et al. Heat resistance and salt hypersensitivity in Lactococcus lactis due to spontaneous mutation of llmg_1816(gdpP) induced by high-temperature growth[J]. Appl Environ Micro-biol, 2012, 78(21):7753-7759. [17] Ye M, Zhang JJ, Fang X, et al. DhhP, a cyclic di-AMP phosphodiesterase of Borrelia burgdorferi , is essential for cell growth and virulence[J]. Infect Im-mun, 2014, 82(5):1840-1849. [18] Jervis AJ, Thackray PD, Houston CW, et al. SigM-responsive genes of Bacillus subtilis and their pro-moters[J]. J Bacteriol, 2007, 189(12):4534-4538. [19] Cao M, Kobel PA, Morshedi MM, et al. Defining the Bacillus subtilis sigma(W) regulon: a comparative analysis of promoter consensus search, run-off transcription/macroarray analysis(ROMA), and transcriptional profiling approaches[J]. J Mol Biol, 2002, 316(3):443-457. [20] Mehne FM, Gunka K, Eilers H, et al. Cyclic di-AMP homeostasis in Bacillus subtilis : both lack and high level accumulation of the nucleotide are detrimental for cell growth[J]. J Biol Chem, 2013, 288(3):2004- 2017. [21] Burhenne H, Kaever V. Quantification of cyclic dinucleotides by reversed-phase LC-MS/MS[J]. Me-thods Mol Biol, 2013, 1016:27-37. [22] Zheng C, Wang J, Luo Y, et al. Highly efficient enzymatic preparation of c-di-AMP using the dia-denylate cyclase DisA from Bacillus thuringiensis [J]. Enzyme Microb Technol, 2013, 52(6/7):319-324. [23] Rao F, See RY, Zhang D, et al. YybT is a signaling protein that contains a cyclic dinucleotide phospho-diesterase domain and a GGDEF domain with ATPase activity[J]. J Biol Chem, 2010, 285(1):473-482. [24] Tan E, Rao F, Pasunooti S, et al. Solution structure of the PAS domain of a thermophilic YybT protein homolog reveals a potential ligand-binding site[J]. J Biol Chem, 2013, 288(17):11949-11959. [25] Zhang L, Li W, He ZG. DarR, a TetR-like transcrip-tional factor, is a cyclic di-AMP-responsive repressor in Mycobacterium smegmatis [J]. J Biol Chem, 2013, 288(5):3085-3096. [26] Corrigan RM, Campeotto I, Jeganathan T, et al. Systematic identification of conserved bacterial c-di-AMP receptor proteins[J]. Proc Natl Acad Sci U S A, 2013, 110(22):9084-9089. [27] Epstein W. The roles and regulation of potassium in bacteria[J]. Prog Nucleic Acid Res Mol Biol, 2003, 7:293-320. [28] Müller M, Hopfner KP, Witte G. c-di-AMP reco-gnition by Staphylococcus aureus PstA[J]. FEBS Lett, 2015, 589(1):45-51. [29] Ninfa AJ, Atkinson MR. PⅡ signal transduction proteins[J]. Trends Microbiol, 2000, 8(4):172-179. [30] Boye E. DisA, a busy bee that monitors chromosome integrity[J]. Cell, 2006, 125(4):641-643. [31] Eiamphungporn W, Helmann JD. The Bacillus sub - tilis sigma (M) regulon and its contribution to cell envelope stress responses[J]. Mol Microbiol, 2008, 67(4):830-848. [32] Wang X, Davlieva M, Reyes J, et al. A novel pho-sphodiesterase of the GdpP family modulates cyclic di-AMP levels in response to cell membrane stress in daptomycin-resistant enterococci[J]. Antimicrob Agents Chemother, 2017, 61(3):e01422-16. [33] Gries CM, Bruger EL, Moormeier DE, et al. Cyclic di-AMP released from Staphylococcus aureus biofilm induces a macrophage typeⅠinterferon response[J]. Infect Immun, 2016, 84(12):3564-3574. [34] Gundlach J, Rath H, Herzberg C, et al. Second mes-senger signaling in Bacillus subtilis : accumulation of cyclic di-AMP inhibits biofilm formation[J]. Front Microbiol, 2016, 7:804. [35] Thibessard A, Borges F, Fernandez A, et al. Identi-fication of Streptococcus thermophilus CNRZ368 genes involved in defense against superoxide stress [J]. Appl Environ Microbiol, 2004, 70(4):2220-2229. [36] Bowman L, Zeden MS, Schuster CF, et al. New insights into the cyclic di-adenosine monophosphate (c-di-AMP) degradation pathway and the require-ment of the cyclic dinucleotide for acid stress resis-tance in Staphylococcus aureus [J]. J Biol Chem, 2016, 291(53):26970-26986. [37] Cheng X, Zheng X, Zhou X, et al. Regulation of oxidative response and extracellular polysaccharide synthesis by a diadenylate cyclase in Streptococcus mutans [J]. Environ Microbiol, 2016, 18(3):904-922. [38] Peng X, Zhang Y, Bai G, et al. Cyclic di-AMP me-diates biofilm formation[J]. Mol Microbiol, 2016, 99(5):945-959. [39] 邱伟, 程兴群, 周学东, 等. 牙龈卟啉单胞菌c-di-AMP代谢相关基因的克隆及表达纯化[J]. 华西口腔医学杂志, 2015, 33(6):607-612. Qiu W, Cheng XQ, Zhou XD, et al. Cloning, expres-sion, and purification of c-di-AMP metabolism-related genes from Porphyromonas gingivalis [J].West Chin J Stomatol, 2015, 33(6):607-612. |
[1] | 王冠儒,冯强. 牙龈卟啉单胞菌在阿尔兹海默症发生中作用的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 397-403. |
[2] | 郑直, 颜世果. 疱疹病毒与牙周炎的关系[J]. 国际口腔医学杂志, 2018, 45(2): 224-227. |
[3] | 刘琨,侯本祥. 粪肠球菌和变异链球菌脂磷壁酸的生物学活性[J]. 国际口腔医学杂志, 2017, 44(1): 118-124. |
[4] | 周双双 郑欣 周学东 徐欣. 菌斑生物膜产碱代谢与龋病[J]. 国际口腔医学杂志, 2016, 43(5): 573-577. |
[5] | 程远 殷艳丽 赵蕾. 龈沟产线菌的研究进展[J]. 国际口腔医学杂志, 2014, 41(5): 593-597. |
[6] | 郭强1,2 徐欣1 周学东1. 口腔细菌代谢产碱及其分子生物学研究进展[J]. 国际口腔医学杂志, 2013, 40(1): 80-85. |
[7] | 朱赟婕综述 陈晖审校. 牙龈卟啉单胞菌与冠心病之间的关系[J]. 国际口腔医学杂志, 2012, 39(6): 782-785. |
[8] | 袁艺 郭强 李明云 熊萍 李继遥 朱硃 李燕 龚其美 肖晓蓉 肖丽英. 链球菌和放线菌的胞外代谢物代谢组学鉴定[J]. 国际口腔医学杂志, 2011, 38(4): 399-402. |
[9] | 栾晓玲综述 王艳 冯希平审校. 口腔细菌尿素酶的检测[J]. 国际口腔医学杂志, 2011, 38(3): 358-360. |
[10] | 陈婷综述 吴补领审校. 口腔细菌的新种属及其生物学特性[J]. 国际口腔医学杂志, 2011, 38(2): 181-184. |
[11] | 于西佼,李纾,. 报告基因及其在生物膜研究中的应用[J]. 国际口腔医学杂志, 2006, 33(01): 15-17. |
[12] | 李煌,李松,徐芸,陈扬熙. 蛋白质组学技术在细胞信号传递机制研究中的应用[J]. 国际口腔医学杂志, 2005, 32(05): 344-346. |
[13] | 高燕,刘丽. α6β4整合素在上皮移行中的作用[J]. 国际口腔医学杂志, 2004, 31(05): 340-342. |
[14] | 李孝权. 口腔细菌新种属及分类位置变动[J]. 国际口腔医学杂志, 2002, 29(06): -. |
[15] | 李艳红. 口腔细菌间相互作用研究进展[J]. 国际口腔医学杂志, 2002, 29(03): -. |
|