Inter J Stomatol ›› 2017, Vol. 44 ›› Issue (1): 103-107.doi: 10.7518/gjkq.2017.01.021

• ·Reviews· • Previous Articles     Next Articles

Saccharomyces albicans: its dental caries correlation and mechanism

Liu Shiyu, He Jinzhi, Li Mingyun.   

  1. State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2016-03-19 Online:2017-01-01 Published:2017-01-01

Abstract: Saccharomyces albicans(S. albicans) is a Gram-positive fungus and widely exists in the upper respiratory tract, intestinal canal, and vagina of healthy people. S. albicans does not cause diseases in a state of symbiosis with the host. The ability of S. albicans to switch its morphotype from yeast to hyphal forms contributes to its pathogenesis and leads to oral mucosa infection and dental caries. In oral biofilms of caries-affected people, an interaction may exist between S. albicans and Streptococcus mutans(S. mutans) leading to the development of dental caries. S. albicans tends to adhere tightly to Streptococcus gordonii(S. gordonii), that is, a polysaccharide existing on the surface of the cell wall of S. gordonii is one of the adhesion receptors of S. albicans. S. gordonii can alleviate the inhibition effect of quorum-sensing mechanism on hyphae formation and biofilm development of S. albicans, thereby increasing the biomass. This review focused on S. albicans, the correlation of S. albicansand dental caries, and the research progress on the possible specific mechanism involved in the occurrence and development of dental caries caused by the interactions of S. albicans, together with S. mutans, S. gordonii, and other oral bacteria. This study aims to provide ideas and references for future clinical research.

Key words: Saccharomyces albicans, dental ceries, Streptococcus mutans, Streptococcus gordonii

CLC Number: 

  • R780.2

TrendMD: 
[1] Metwalli KH, Khan SA, Krom BP, et al. Strepto-coccus mutans , Candida albicans , and the human mouth: a sticky situation[J]. PLoS Pathog, 2013, 9 (10):e1003616.
[2] Dewhirst FE, Chen T, Izard J, et al. The human oral microbiome[J]. J Bacteriol, 2010, 192(19):5002- 5017.
[3] Costalonga M, Herzberg MC. The oral microbiome and the immunobiology of periodontal disease and caries[J]. Immunol Lett, 2014, 162(2Pt A):22-38.
[4] He J, Li Y, Cao Y, et al. The oral microbiome div-ersity and its relation to human diseases[J]. Folia Microbiol, 2015, 60(1):69-80.
[5] Warinner C, Rodrigues JF, Vyas R, et al. Pathogens and host immunity in the ancient human oral cavity [J]. Nat Genet, 2014, 46(4):336-344.
[6] Han YW, Wang X. Mobile microbiome: oral bacteria in extra-oral infections and inflammation[J]. J Dent Res, 2013, 92(6):485-491.
[7] Umemura K, Wada K. Roles of oral bacteria in car-diovascular diseases—from molecular mechanisms to clinical cases: preface[J]. J Pharmacol Sci, 2010, 113(2):101-102.
[8] Astafurov K, Elhawy E, Ren L, et al. Oral micro-biome link to neurodegeneration in glaucoma[J]. PLoS One, 2014, 9(9):e104416.
[9] Selwitz RH, Ismail AI, Pitts NB. Dental caries[J]. Lancet, 2007, 369(9555):51-59.
[10] Lund AE. Bacterium, fungus may lead to early childhood caries[J]. J American Dent Asso, 2014, 145(5):426-427.
[11] Cavalcanti YW, Morse DJ, da Silva WJ, et al. Virulence and pathogenicity of Candida albicans is enhanced in biofilms containing oral bacteria[J]. Biofouling, 2015, 31(1):27-38.
[12] Kraneveld EA, Buijs MJ, Bonder MJ, et al. The relation between oral Candida load and bacterial microbiome profiles in Dutch older adults[J]. PLoS One, 2012, 7(8):e42770.
[13] Sztajer H, Szafranski SP, Tomasch J, et al. Cross-feeding and interkingdom communication in dual-species biofilms of Streptococcus mutans and Candida albicans [J]. ISME J, 2014, 8(11):2256-2271.
[14] Falsetta ML, Klein MI, Colonne PM, et al. Symbiotic relationship between Streptococcus mutans and Candida albicans synergizes virulence of plaque biofilms in vivo [J]. Infect Immun, 2014, 82(5):1968- 1981.
[15] 周学东, 肖丽英, 肖晓蓉. 实用口腔微生物学与技术[M]. 北京: 人民卫生出版社, 2009:154. Zhou XD, Xiao LY, Xiao XR. Applied oral micro-biology and technique[M]. Beijing: People’s Me-dical Publishing House, 2009:154.
[16] Kim J, Sudbery P. Candida albicans , a major human fungal pathogen[J]. J Microbiol, 2011, 49(2):171- 177.
[17] Nikawa H, Yamashiro H, Makihira S, et al. In vitro cariogenic potential of Candida albicans [J]. Mycoses, 2003, 46(11/12):471-478.
[18] Klinke T, Guggenheim B, Klimm W, et al. Dental caries in rats associated with Candida albicans [J]. Caries Res, 2011, 45(2):100-106.
[19] Ghasempour M, Sefidgar SA, Eyzadian H, et al. Prevalence of Candida albicans in dental plaque and caries lesion of early childhood caries(ECC) ac-cording to sampling site[J]. Caspian J Intern Med, 2011, 2(4):304-308.
[20] de Carvalho FG, Silva DS, Hebling J, et al. Presence of mutans streptococci and Candida spp. in dental plaque/dentine of carious teeth and early childhood caries[J]. Arch Oral Biol, 2006, 51(11):1024-1028.
[21] Akdeniz BG, Koparal E, Sen BH, et al. Prevalence of Candida albicans in oral cavities and root canals of children[J]. ASDC J Dent Child, 2002, 69(3):289- 292.
[22] Barbieri DdS’AV, Vicente VA, Fraiz FC, et al. Analysis of the in vitro adherence of Streptococcus mutans and Candida albicans [J]. Braz J Microbiol, 2007, 38(4):624-663.
[23] Jarosz LM, Deng DM, van der Mei HC, et al. Stre-ptococcus mutans competence-stimulating peptide inhibits Candida albicans hypha formation[J]. Eukaryotic Cell, 2009, 8(11):1658-1664.
[24] Bagg J, Silverwood RW. Coagglutination reactions between Candida albicans and oral bacteria[J]. J Med Microbiol, 1986, 22(2):165-169.
[25] Branting C, Sund ML, Linder LE. The influence of Streptococcus mutans on adhesion of Candida albi - cans to acrylic surfaces in vitro [J]. Arch Oral Biol, 1989, 34(5):347-353.
[26] Gregoire S, Xiao J, Silva BB, et al. Role of glu-cosyltransferase B in interactions of Candida albicans with Streptococcus mutans and with an experimental pellicle on hydroxyapatite surfaces[J]. Appl Environ Microbiol, 2011, 77(18):6357-6367.
[27] Nyvad B, Kilian M. Comparison of the initial streptococcal microflora on dental enamel in caries-active and in caries-inactive individuals[J]. Caries Res, 1990, 24(4):267-272.
[28] Scannapieco FA, Solomon L, Wadenya RO. Emer-gence in human dental plaque and host distribution of amylase-binding streptococci[J]. J Dent Res, 1994, 73(10):1627-1635.
[29] Gilbert K, Joseph R, Vo A, et al. Children with severe early childhood caries: streptococci genetic strains within carious and white spot lesions[J]. J Oral Microbiol, 2014, doi:10.3402/jom.v6.25805.
[30] Tanzer JM, Thompson AM, Grant LP, et al. Stre-ptococcus gordonii’s sequenced strain CH1 glu-cosyltransferase determines persistent but not initial colonization of teeth of rats[J]. Arch Oral Biol, 2008, 53(2):133-140.
[31] Marchant S, Brailsford SR, Twomey AC, et al. The predominant microflora of nursing caries lesions[J]. Caries Res, 2001, 35(6):397-406.
[32] Jenkinson HF, Lala HC, Shepherd MG. Coaggrega-tion of Streptococcus sanguis and other streptococci with Candida albicans [J]. Infect Immun, 1990, 58 (5):1429-1436.
[33] Holmes AR, Cannon RD, Jenkinson HF. Interactions of Candida albicans with bacteria and salivary mo-lecules in oral biofilms[J]. J Ind Microbiol, 1995, 15 (3):208-213.
[34] Holmes AR, Gopal PK, Jenkinson HF. Adherence of Candida albicans to a cell surface polysaccharide receptor on Streptococcus gordonii [J]. Infect Immun, 1995, 63(5):1827-1834.
[35] Ricker A, Vickerman M, Dongari-Bagtzoglou A. Streptococcus gordonii glucosyltransferase promotes biofilm interactions with Candida albicans [J]. J Oral Microbiol, 2014, doi:10.3402/jom.v6.23419.
[36] Silverman RJ, Nobbs AH, Vickerman MM, et al. Interaction of Candida albicans cell wall Als3 protein with Streptococcus gordonii SspB adhesin promotes development of mixed-species communi-ties[J]. Infect Immun, 2010, 78(11):4644-4652.
[37] Bamford CV, d’Mello A, Nobbs AH, et al. Strep-tococcus gordonii modulates Candida albicans biofilm formation through intergeneric communication[J]. Infect Immun, 2009, 77(9):3696-3704.
[38] Orsi CF, Sabia C, Ardizzoni A, et al. Inhibitory effects of different lactobacilli on Candida albicans hyphal formation and biofilm development[J]. J Biol Regul Homeost Agents, 2014, 28(4):743-752.
[39] Vilela SF, Barbosa JO, Rossoni RD, et al. Lac-tobacillus acidophilus ATCC 4356 inhibits biofilm formation by C.albicans and attenuates the expe-rimental candidiasis in Galleria mellonella[J]. Viru-lence, 2015, 6(1):29-39.
[40] Ceresa C, Tessarolo F, Caola I, et al. Inhibition of Candida albicans adhesion on medical-grade silicone by a Lactobacillus -derived biosurfactant[J]. J Appl Microbiol, 2015, 118(5):1116-1125.
(本文采编 王晴)
[1] Gong Tao,Li Yuqing,Zhou Xuedong.. Research progress on sugar transporter and regulatory mechanisms in Streptococcus mutans [J]. Int J Stomatol, 2022, 49(5): 506-510.
[2] Li Shanshan,Yang Fang. Research progress on the relationship between Streptococcus mutans and Candida albicans in caries [J]. Int J Stomatol, 2022, 49(4): 392-396.
[3] Jing Wang,Yan Wang,Chuandong Wang,Ruijie Huang,Yan Tian,Wei Hu,Jing Zou. Application of liquorice and its extract to the prevention and treatment of oral infections and associated diseases [J]. Inter J Stomatol, 2018, 45(5): 546-552.
[4] Gai Kuo, Hao Liying, Jiang Li.. Study of the adhesion mechanism of oral Streptococcus mutans based on atomic force microscope [J]. Inter J Stomatol, 2017, 44(3): 320-324.
[5] Liu Kun, Hou Benxiang.. Biological activity of Enterococcus faecalis and Streptococcus mutans lipoteichoic acid [J]. Inter J Stomatol, 2017, 44(1): 118-124.
[6] Zhang Ying, Li Mingyong, Huo Li, Meng Yuan. Biosynthesis of autoinducer-2 and determination of its bioactivity in vitro [J]. Inter J Stomatol, 2016, 43(5): 519-523.
[7] Zhao Xingfu, Jiang Shan, Huang Xiaojing, Yan Fuhua. Differential expression of surface-associated proteins in clinical isolations of Streptococcus mutans [J]. Inter J Stomatol, 2016, 43(3): 273-277.
[8] Wang Yizhou, Zhang Yaqi, Niu Xuewei, Zhang Zhimin. The groE operon of Streptococcus mutans with its expression and regulation [J]. Inter J Stomatol, 2016, 43(3): 348-351.
[9] Shi Jing, Yan Zhengbin, Hou Jingqiu, Peng Hui. Influence of bracketless invisible aligner technique and conventional technique on the number of Streptococcus mutans and Porphyromonas gingivalis [J]. Inter J Stomatol, 2016, 43(2): 151-154.
[10] Liu Yi1, Fei Wei1, Wang Lina2, Zhang Siyu3, Wang Yanjun1, Wu Hongkun4.. Effects of synthetic antimicrobial decapeptide on the growth and structure of Streptococcus mutans biofilm [J]. Inter J Stomatol, 2015, 42(4): 401-405.
[11] Song Ying, Zou Ling.. Structure, function, and control strategies of collagen and laminin-binding protein [J]. Inter J Stomatol, 2015, 42(4): 466-470.
[12] Zhang Jianying, Ling Junqi. Function of surface protein antigen P in the biofilm formation of Streptococcus mutans [J]. Inter J Stomatol, 2015, 42(1): 111-113.
[13] Fang Li, Liu Yuan, Yang Ran, Zou Jing. Comparison of Streptococcus mutans in saliva before and after dental caries filling with resin-based composite [J]. Inter J Stomatol, 2015, 42(1): 28-30.
[14] Geng Fengxue, Pan Yaping.. Interactions among bacteria of different colonization processes within biofilms and the model [J]. Inter J Stomatol, 2014, 41(4): 431-435.
[15] Huang Ping, Wan Huchun, He Yonghong.. Differential proteomics of Streptococcus mutans under stress condition [J]. Inter J Stomatol, 2014, 41(1): 92-96.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[9] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[10] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .