国际口腔医学杂志 ›› 2020, Vol. 47 ›› Issue (2): 152-158.doi: 10.7518/gjkq.2020040

• 论著 • 上一篇    下一篇

选择性激光熔融与铸造钛合金卡环的模拟摘戴固位力研究

刘春煦,鲁雨晴,贾璐铭,董博,张倩倩,于海洋()   

  1. 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心四川大学华西口腔医院修复科 成都 610041
  • 收稿日期:2019-06-11 修回日期:2019-12-04 出版日期:2020-03-01 发布日期:2020-03-12
  • 通讯作者: 于海洋 E-mail:yhyang6812@scu.edu.cn
  • 作者简介:刘春煦,硕士,Email: liu_chunxu@qq.com
  • 基金资助:
    国家自然科学基金(81571006)

Comparative study of the retention force of titanium-alloy clasps fabricated through selective laser melting and casting

Liu Chunxu,Lu Yuqing,Jia Luming,Dong Bo,Zhang Qianqian,Yu Haiyang()   

  1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2019-06-11 Revised:2019-12-04 Online:2020-03-01 Published:2020-03-12
  • Contact: Haiyang Yu E-mail:yhyang6812@scu.edu.cn
  • Supported by:
    This study was supported by National Natural Science Foundation of China(81571006)

摘要:

目的 通过模拟患者卡环摘戴实验,研究3D打印和铸造2种不同加工工艺对钛合金卡环固位力变化的影响,为卡环的临床设计及制作提供参考。方法 用计算机辅助设计(CAD)方法进行基牙、牙冠和卡环的设计。卡环设计为0.25和0.75 mm 2种倒凹深度,其他参数相同;加工方式分3组,实验组分别用EOSINT和Concept Laser对设计好的数据进行3D打印成型,对照组为铸造工艺卡环组,合计36组。用万能力学测试仪进行模拟卡环摘戴的循环实验,总循环次数为15 000次,记录初始固位力,并每1 500次记录1次固位力。结果 相同的加工工艺,0.75 mm倒凹深度的卡环固位力大于0.25 mm倒凹深度的卡环固位力;其他参数相同时,选择性激光熔化成型(SLM)的钛合金卡环固位力大于失蜡铸造的钛合金卡环固位力;尚不能认为EOSINT和Concept Laser这2种打印系统加工的卡环固位力存在差异。结论 SLM技术成型的钛合金卡环固位力比失蜡铸造钛合金卡环固位力更高。失蜡铸造的钛合金卡环倒凹深度应该设计为0.75 mm,而使用数字化设计配合3D打印制造的钛合金卡环倒凹深度为0.25 mm就可以达到临床需求;EOSINT和Concept Laser这2种SLM系统成型的钛合金卡环固位力基本相同。

关键词: 3D打印, 卡环, 固位力, 钛合金

Abstract:

Objective This study aimed to determine the effects of 3D printing and casting on the retention force of titanium-alloy clasps by simulating clasp removal and wear by patients to provide a reference for the clinical design and manufacture of clasps. Methods Preparatory abutment teeth, crowns, and clasps were designed through computer-aided design. The clasps were designed with two undercut depths of 0.25 and 0.75 mm while the other parameters were held constant. The processing technology was divided into three groups. The experimental group used EOSINT and Concept Laser to 3D print the designed data, whereas the control group used casting technology. A total of 36 groups were set. A universal mechanical tester was used to simulate the cycle test of the clasps with a total cycle of 15 000 times. The initial retention force was recorded, and the retention force was recorded every 1 500 times. Results By using the same processing technology, the retention force of the undercut depth of 0.75 mm was greater than that of 0.25 mm. The retention force of the titanium-alloy clasp formed through selective laser melting (SLM) with the same parameters was greater than that of the clasps fabricated through casting. EOSINT and Concept Laser did not have different retentive forces. Conclusion The retention force of the titanium alloy clasp produced through SLM technology was higher than that of the clasp fabricated through casting. The undercut depth of titanium-alloy clasps machined by casting should be 0.75 mm. Titanium-alloy clasps that can meet clinical requirements can be produced through using digital design, 3D printing, and an undercut depth of 0.25 mm. The retention forces of titanium-alloy clasps fabricated through EOSINT and Concept Laser SLM systems were the same.

Key words: 3D printing, clasp, retention force, titanium alloy

中图分类号: 

  • R783.1

图 1

卡环、牙冠和基牙的样本三维设计示意图"

表 1

钛合金卡环SLM参数设置"

测量项目 激光功率/W 扫描速度/(mm·s-1 厚度/mm 扫描间距/mm
实体 280 1 200 0.03 0.14
支撑 60 700 0.06

图 2

打印并处理完成的卡环样本"

图 3

2种倒凹深度的卡环的三维模型与实体对比 A:0.75 mm倒凹深度的卡环样本三维设计;B:0.75 mm倒凹深度的实体卡环样本;C:0.25 mm倒凹深度的卡环样本三维设计;D:0.25 mm倒凹深度的实体卡环样本。"

图 4

实验样本与夹具的三维模式"

表 2

15 000次循环过程卡环固位力的变化"

循环次数 EOS CL Cast
0 8.93±0.64 11.46±0.60 9.66±0.40 11.94±0.43 6.91±0.57 9.68±0.50
1 500 8.19±0.62 10.14±1.22 8.51±0.55 10.97±0.68 6.54±0.89 8.92±0.50
3 000 7.88±0.57 9.64±1.31 7.81±0.65 9.97±0.59 5.92±0.16 8.44±0.50
4 500 7.64±0.61 9.08±1.14 7.36±0.64 9.43±0.73 5.71±0.29 8.13±0.49
6 000 7.28±0.67 8.57±0.97 6.85±0.65 8.95±0.72 5.23±0.36 7.70±0.50
7 500 6.86±0.68 8.12±0.90 6.57±0.70 8.32±0.57 4.98±0.44 7.16±0.30
9 000 6.55±0.51 7.81±0.81 6.42±0.70 7.61±0.63 4.68±0.49 6.67±0.27
10 500 6.25±0.38 7.34±0.78 6.22±0.58 7.22±0.59 4.36±0.22 6.24±0.18
12 000 5.99±0.38 6.98±0.55 6.12±0.54 7.09±0.51 4.14±0.60 5.85±0.20
13 500 5.59±0.40 6.67±0.49 6.03±0.49 7.04±0.47 3.93±0.57 5.50±0.38
15 000 5.37±0.52 6.58±0.44 5.98±0.49 7.01±0.43 3.75±0.56 5.19±0.39

图 5

15 000次循环固位力变化折线图"

表 3

2种倒凹深度卡环样本每1 500次循环固位力的P值"

倒凹深度/mm 0 1 500 3 000 4 500 6 000 7 500 9 000 10 500 12 000 13 500 15 000
0.25 0.030 0.164 0.847 0.437 0.254 0.464 0.703 0.909 0.623 0.109 0.052
0.75 0.128 0.164 0.566 0.522 0.444 0.629 0.635 0.765 0.711 0.191 0.108

图 6

循环结束后卡环组织面磨损处的SEM A:CL组 × 500;B:EOS组 × 500;C:Cast组 × 500;D:CL组 × 1 000;E:EOS组 × 1 000;F:Cast组 × 1 000。"

[1] Park JH, Min BK, Yang HS , et al. Clinical applica-tion of mandibular removable partial denture using implant-supported surveyed crown: a case report[J]. J Korean Acad Prosthodont, 2018,56(2):154.
[2] Virard F, Venet L, Richert R , et al. Manufacturing of an immediate removable partial denture with an in-traoral scanner and CAD-CAM technology: a case report[J]. BMC Oral Health, 2018,18(1):120.
[3] 胡丹丹, 吴琳 . 可摘局部义齿临床应用和研究现状[J]. 中国实用口腔科杂志, 2018,11(8):498-503.
Hu DD, Wu L . Clinical application and research status of removable partial denture[J]. Chin J Pract Stomatol, 2018,11(8):498-503.
[4] Castleman LS, Motzkin SM, Alicandri FP , et al. Bio-compatibility of nitinol alloy as an implant material[J]. J Biomed Mater Res, 1976,10(5):695-731.
[5] Faria AC, Rodrigues RC, Rosa AL , et al. Experi-mental titanium alloys for dental applications[J]. J Prosthet Dent, 2014,112(6):1448-1460.
[6] Cruz RS, Lemos CAA, Oliveira HFF , et al. Comparison of the use of titanium-zirconium alloy and titanium alloy in dental implants: a systematic review and meta-analysis[J]. J Oral Implantol, 2018,44(4):305-312.
[7] Torabi K, Farjood E, Hamedani S . Rapid prototyping technologies and their applications in prosthodontics, a review of literature[J]. J Dent (Shiraz), 2015,16(1):1-9.
[8] Park JK, Lee WS, Kim HY , et al. Accuracy eva-luation of metal copings fabricated by computer-aided milling and direct metal laser sintering sys-tems[J]. J Adv Prosthodont, 2015,7(2):122-128.
[9] Tannous F, Steiner M, Shahin R , et al. Retentive forces and fatigue resistance of thermoplastic resin clasps[J]. Dent Mater, 2012,28(3):273-278.
[10] Zheng B, Wang XL, Zheng YX , et al. 3D-printed model improves clinical assessment of surgeons on anatomy[J]. J Robot Surg, 2019,13(1):61-67.
[11] 蒲以松, 王宝奇, 张连贵 . 金属3D打印技术的研究[J]. 表面技术, 2018,47(3):78-84.
Pu YS, Wang BQ, Zhang LG . Metal 3D printing technology[J]. Surf Technol, 2018,47(3):78-84.
[12] Takahashi M, Kikuchi M, Takada Y . Mechanical pro-perties and microstructures of dental cast Ti-6Nb-4Cu, Ti-18Nb-2Cu, and Ti-24Nb-1Cu alloys[J]. Dent Mater J, 2016,35(4):564-570.
[13] Kim D, Park C, Yi YJ , et al. Comparison of cast Ti-Ni alloy clasp retention with conventional removable partial denture clasps[J]. J Prosthet Dent, 2004,91(4):374-382.
[14] Kajima Y, Takaichi A, Nakamoto T , et al. Fatigue strength of Co-Cr-Mo alloy clasps prepared by se-lective laser melting[J]. J Mech Behav Biomed Mater, 2016,59:446-458.
[15] Frank RP, Nicholls JI . A study of the flexibility of wrought wire clasps[J]. J Prosthet Dent, 1981,45(3):259-267.
[16] Soo S, Leung T . Hidden clasps versus C clasps and I bars: a comparison of retention[J]. J Prosthet Dent, 1996,75(6):622-625.
[17] Vallittu PK, Kokkonen M . Deflection fatigue of cobalt-chromium, titanium, and gold alloy cast denture clasp[J]. J Prosthet Dent, 1995,74(4):412-419.
[1] 于婉琦,周延民,赵静辉. 口腔种植体新材料的研究现状[J]. 国际口腔医学杂志, 2019, 46(4): 488-496.
[2] 王珂, 项涛, 汤亚玲, 梁新华. 3D打印技术在口腔颌面外科实验教学中的应用[J]. 国际口腔医学杂志, 2018, 45(1): 119-124.
[3] 门庆林, 周宪华, 王伟. 改良美学卡环可摘局部义齿修复远中游离缺失的临床疗效观察[J]. 国际口腔医学杂志, 2017, 44(4): 426-429.
[4] 王静,袁荣涛,董蒨. 计算机辅助手术系统与3D打印技术在口腔颌面部缺损修复重建中的应用[J]. 国际口腔医学杂志, 2016, 43(6): 725-728.
[5] 陈西文 周进茹 朱智敏. 粘接固定桥的固位及研究进展[J]. 国际口腔医学杂志, 2016, 43(5): 537-541.
[6] 朱晓晶 王焱. 钛种植体表面共沉积钙磷-生物活性分子的研究进展[J]. 国际口腔医学杂志, 2014, 41(5): 617-620.
[7] 尹鸿民1 浩志超2 徐佳蕊2 高久瑜3. 反复取戴对磁性附着体固位力和磁通量的影响[J]. 国际口腔医学杂志, 2014, 41(4): 409-411.
[8] 张静 唐毅 王仕锐 李俊颖 于海洋. 伴下颌神经管变异的种植修复1例[J]. 国际口腔医学杂志, 2014, 41(3): 292-295.
[9] 齐佳妮1 兰晶2. 磁性附着体在种植全口覆盖义齿中的应用进展[J]. 国际口腔医学杂志, 2014, 41(2): 191-194.
[10] 陈建宇1 张志光1 李子夫2. 选择性激光熔化技术在口腔医学领域中的应用[J]. 国际口腔医学杂志, 2014, 41(1): 97-101.
[11] 刘长虹. 套筒冠义齿固位体修复的设计和选择[J]. 国际口腔医学杂志, 2011, 38(6): 627-631.
[12] 王强1 那莹2 冯翠娟2 战德松1 张扬2. 氧化处理对医用镍钛合金表面亲水性的影响[J]. 国际口腔医学杂志, 2011, 38(5): 506-508.
[13] 杜锦锦综述 汪大林审校. 牙科钛及钛合金的表面改性新进展[J]. 国际口腔医学杂志, 2010, 37(6): 703-706.
[14] 刘霜综述 张连云, 李长义审校. 口腔修复支架用钛合金的研究进展[J]. 国际口腔医学杂志, 2010, 37(3): 362-362~364.
[15] 秦莹,王少安. 钛及钛合金口腔种植体的腐蚀性能研究[J]. 国际口腔医学杂志, 2008, 35(S1): -.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 汤庆奋,王学侠. 17β-雌二醇对人类阴道和口腔颊粘膜的渗透性[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 潘劲松. 颈总动脉指压和颈内动脉球囊阻断试验在大脑血液动力学中的不同影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[3] 王昆润. 后牙冠根斜形牙折的治疗[J]. 国际口腔医学杂志, 1999, 26(05): .
[4] 杨锦波. 嵌合体防龋疫苗的研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 汪月月,郭莉莉. 口腔机能与老化—痴呆危险因素流行病学研究[J]. 国际口腔医学杂志, 1999, 26(04): .
[6] 戴青. 口腔念珠菌病的新分类[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 王金涛 刘美娟 孙宏晨 欧阳喈. 牙槽嵴牵张成骨[J]. 国际口腔医学杂志, 2004, 31(02): 146 -148 .
[8] 蔡霞,李成章. 前列腺素E_2受体EP亚型在牙周炎发病机制中的作用[J]. 国际口腔医学杂志, 2005, 32(06): 461 -462 .
[9] 轩东英,张建波 金岩. 胚胎发育期TGF-β超家族成员与腭裂发生的关系[J]. 国际口腔医学杂志, 2004, 31(02): 132 -134 .
[10] 黄维佳综述 平飞云审校. 涎腺黏膜相关淋巴组织淋巴瘤的研究进展[J]. 国际口腔医学杂志, 2009, 36(5): 577 -579 .