国际口腔医学杂志 ›› 2018, Vol. 45 ›› Issue (5): 527-533.doi: 10.7518/gjkq.2018.05.006

• 种植专栏 • 上一篇    下一篇

钛种植体表面形貌对成骨的影响

祁星颖,郑国莹,隋磊()   

  1. 天津医科大学口腔医院修复科 天津 300070
  • 收稿日期:2017-12-20 修回日期:2018-06-04 出版日期:2018-09-01 发布日期:2018-09-20
  • 通讯作者: 隋磊
  • 作者简介:祁星颖,硕士,Email:653463840@qq.com

Effects of titanium implant surface topographies on osteogenesis

Xingying Qi,Guoying Zheng,Lei. Sui()   

  1. Dept. of Prosthodontics, Stomatological Hospital, Tianjin Medical University, Tianjin 300070, China
  • Received:2017-12-20 Revised:2018-06-04 Online:2018-09-01 Published:2018-09-20
  • Contact: Lei. Sui

摘要:

钛种植体表面形貌是影响其周围骨结合的重要因素之一。目前,已有多种改性手段处理钛种植体表面以获得微米级形貌、纳米级形貌和分级微纳复合形貌。与未经改性处理的光滑表面相比,这些不同层级的粗糙表面形貌对种植体周围骨整合均有不同程度的促进作用。本文综述了钛种植体不同表面形貌的特点、制备方法及各自对成骨细胞黏附、增殖、分化等生物学行为的影响,为进一步优化设计以获得早期骨整合提供参考。

关键词: 钛种植体, 表面形貌, 微米级结构, 纳米级结构, 骨结合

Abstract:

The surface topography of titanium implants is one of the most important factors affecting implant-bone integration. At present, several methods, such as microtopography, nanotopography, and hierarchical hybrid microtopography/nanotopography, have been applied to modify titanium implant surfaces. These techniques promote implant osseointegration more extensively compared with smooth surfaces without modifications. The present study reviews different titanium implant surfaces, including their characteristics, modification methods, and effects on the adhesion, proliferation, and differentiation of osteoblasts. This work provides a reference for optimizing surface designs and achieving early osseointegration.

Key words: titanium implant, surface topography, microstructure, nanostructure, osseointegration

中图分类号: 

  • R783.3
[1] Huang QL, Liu XJ, Yang X , et al. Specific heat treatment of selective laser melted Ti-6Al-4V for biomedical applications[J]. Front Mater Sci, 2015,9(4):373-381.
doi: 10.1007/s11706-015-0315-7
[2] 王方辉, 张姗姗, 舒静媛 , 等. 纯钛种植体表面改性对骨结合的影响[J]. 中国组织工程研究, 2014,18(52):8491-8497.
Wang FH, Zhang SS, Shu JY , et al. Effects of sur-face modification of titanium implants on the osseo-integration[J]. J Clin Rehabil Tissue Eng Res, 2014,18(52):8491-8497.
[3] 陈西文, 朱智敏 . 纯钛在口腔修复中的应用[J]. 中国实用口腔科杂志, 2014,7(3):188-192.
Chen XW, Zhu ZM . The application of titanium in prosthodontics[J]. Chin J Pract Stomatol, 2014,7(3):188-192.
[4] Wang MK, Chen T, Lu SH , et al. Osteogenic com-parison on selective laser melting printed and sand-blasting-acid-etching Ti substrates for customized implant applications[J]. Sci Adv Mater, 2017,9(5):705-714.
doi: 10.1166/sam.2017.3012
[5] Zahran R , RosalesLeal JI, RodríguezValverde MA, et al. Effect of hydrofluoric acid etching time on titanium topography, chemistry, wettability, and cell adhesion[J]. PLoS One, 2016,11(11):e0165296.
doi: 10.1371/journal.pone.0165296
[6] Manjaiah M, Laubscher RF , Effect of anodizing on surface integrity of Grade 4 titanium for biomedical applications[J]. Surf Coat Technol, 2017,313:425.
doi: 10.1016/j.surfcoat.2017.01.077
[7] Kaluđerović MR, Schreckenbach JP, Graf HL , Ti-tanium dental implant surfaces obtained by anodic spark deposition—from the past to the future[J]. Mater Sci Eng: C, 2016,69:1429-1441.
doi: 10.1016/j.msec.2016.07.068
[8] Meng HW, Chien EY, Chien HH , Dental implant bioactive surface modifications and their effects on osseointegration: a review[J]. Biomark Res, 2016,4(1):24.
doi: 10.1186/s40364-016-0078-z pmid: 5155396
[9] Omar O, Karazisis D, Ballo A , et al. The role of well-defined nanotopography of titanium implants on osseointegration: cellular and molecular events in vivo[J]. Int J Nanomedicine, 2016,11:1367-1381.
[10] Schwartz Z, Boyan BD , Underlying mechanisms at the bone-biomaterial interface[J]. J Cell Biochem, 1994,56(3):340-347.
doi: 10.1002/jcb.240560310 pmid: 7876327
[11] Hacking SA, Tanzer M, Harvey EJ , et al. Relative contributions of chemistry and topography to the osseointegration of hydroxyapatite coatings[J]. Clin Orthop Relat Res, 2002(405):24-38.
[12] Mendonça G, Mendonça DB, Aragão FJ , et al. Advancing dental implant surface technology—from micron- to nano-topography[J]. Biomaterials, 2008,29(28):3822-3835.
doi: 10.1016/j.biomaterials.2008.05.012 pmid: 2020202020202020
[13] 耿双双, 赵宝红 . 增强钛种植体表面亲水性能研究进展[J]. 中国实用口腔科杂志, 2016,9(6):368-372.
doi: 10.7504/kq.2016.06.012
Geng SS, Zhao BH . Research progress of hydrophi-licity enhancement of titanium implant surface[J]. Chin J Pract Stomatol, 2016,9(6):368-372.
doi: 10.7504/kq.2016.06.012
[14] 张静超, 莫安春 . 钛种植体表面微结构对成骨细胞影响的研究进展[J]. 国际口腔医学杂志, 2007,34(3):207-209.
Zhang JC, Mo AC . Effect of surface microstructure of titanium implant on osteoblasts viability[J]. Int J Stomatol, 2007,34(3):207-209.
[15] Karoussis IK, Kyriakidou K, Psarros C , et al. Nd: YAG laser radiation (1.064 nm) accelerates diffe-rentiation of osteoblasts to osteocytes on smooth and rough titanium surfaces in vitro[J]. Clin Oral Im-plants Res, 2017,28(7):785-790.
doi: 10.1111/clr.2017.28.issue-7
[16] Li D, Liu B, Wu J , et al. Bone interface of dental implants cytologically influenced by a modified sandblasted surface: a preliminary in vitro study[J]. Implant Dent, 2001,10(2):132-138.
doi: 10.1097/00008505-200104000-00010
[17] Zinger O, Zhao G, Schwartz Z , et al. Differential regulation of osteoblasts by substrate microstructural features[J]. Biomaterials, 2005,26(14):1837-1847.
doi: 10.1016/j.biomaterials.2004.06.035 pmid: 15576158
[18] Le Guéhennec L, Soueidan A, Layrolle P , et al. Surface treatments of titanium dental implants for rapid osseointegration[J]. Dent Mater, 2007,23(7):844-854.
doi: 10.1016/j.dental.2006.06.025 pmid: 16904738
[19] Li D, Lu X, Lin H , et al. Chitosan/bovine serum albumin co-micropatterns on functionalized titanium surfaces and their effects on osteoblasts[J]. J Mater Sci Mater Med, 2013,24(2):489-502.
[20] 鲁雄, 冯波, 翁杰 , 等. 生物材料表面微纳结构对成骨相关细胞的影响[J]. 中国材料进展, 2013,32(10):611-622.
Lu X, Feng B, Weng J , et al. The effects of micro-and nano-structured biomaterial surfaces on osteo-genetic-related cells[J]. Mater Chin, 2013,32(10):611-622.
[21] Zwahr C, Günther D, Brinkmann T , et al. Laser sur-face pattering of titanium for improving the biolo-gical performance of dental implants[J]. Adv Healthc Mater, 2017,6(3). doi: 10.1002/adhm.201600858.
[22] Boyan BD, Lossdörfer S, Wang L , et al. Osteoblasts generate an osteogenic microenvironment when grown on surfaces with rough microtopographies[J]. Eur Cell Mater, 2003,6:22-27.
doi: 10.22203/eCM
[23] Olivares-Navarrete R, Raz P, Zhao G , et al. Integrin alpha2beta1 plays a critical role in osteoblast response to micron-scale surface structure and surface energy of titanium substrates[J]. Proc Natl Acad Sci U S A, 2008,105(41):15767-15772.
doi: 10.1073/pnas.0805420105
[24] Moerke C, Mueller P, Nebe B , Attempted caveolae-mediated phagocytosis of surface-fixed micro-pillars by human osteoblasts[J]. Biomaterials, 2016,76:102-114.
doi: 10.1016/j.biomaterials.2015.10.030 pmid: 5063751
[25] Schwartz Z, Olivares-Navarrete R, Wieland M , et al. Mechanisms regulating increased production of osteoprotegerin by osteoblasts cultured on micros-tructured titanium surfaces[J]. Biomaterials, 2009,30(20):3390-3396.
doi: 10.1016/j.biomaterials.2009.03.047
[26] Lohmann CH, Bonewald LF, Sisk MA , et al. Matu-ration state determines the response of osteogenic cells to surface roughness and 1,25-dihydroxyvi-tamin D3[J]. J Bone Miner Res, 2000,15(6):1169-1180.
doi: 10.1359/jbmr.2000.15.6.1169
[27] Schwartz Z, Lohmann CH, Vocke AK , et al. Osteo-blast response to titanium surface roughness and 1alpha,25-(OH)2D3 is mediated through the mitogen-activated protein kinase (MAPK) pathway[J]. J Bio-med Mater Res, 2001,56(3):417-426.
doi: 10.1002/(ISSN)1097-4636
[28] Dohan Ehrenfest DM, Vazquez L, Park YJ , et al. Identification card and codification of the chemical and morphological characteristics of 14 dental im-plant surfaces[J]. J Oral Implantol, 2011,37(5):525-542.
doi: 10.1563/AAID-JOI-D-11-00080
[29] Zhao LZ, Mei SL, Chu PK , et al. The influence of hierarchical hybrid micro/nano-textured titanium surface with titania nanotubes on osteoblast func-tions[J]. Biomaterials, 2010,31(19):5072-5082.
doi: 10.1016/j.biomaterials.2010.03.014
[30] Kim MJ, Kim CW, Lim YJ , et al. Microrough ti-tanium surface affects biologic response in MG63 osteoblast-like cells[J]. J Biomed Mater Res A, 2006,79(4):1023-1032.
[31] 许嘉允, 邓飞龙, 庄秀妹 , 等. 纯钛微纳米复合形貌对成骨细胞生物学行为的影响[J]. 中华口腔医学研究杂志(电子版), 2015,9(6):21-26.
doi: 10.3877/cma.j.issn.1674-1366.2015.06.005
Xu JY, Deng FL, Zhuang XM , et al. The influence of different hybrid micro/nano hierarchical titanium topographies on osteoblast biological functions[J]. Chin J Stomatol Res (Electr Ed), 2015,9(6):21-26.
doi: 10.3877/cma.j.issn.1674-1366.2015.06.005
[32] Cecchinato F, Xue Y, Karlsson J , et al. In vitro evaluation of human fetal osteoblast response to magnesium loaded mesoporous TiO2 coating[J]. J Biomed Mater Res A, 2014,102(11):3862-3871.
doi: 10.1002/jbm.a.v102.11
[33] Zuo J, Huang XZ, Zhong XX , et al. A comparative study of the influence of three pure titanium plates with different micro- and nano-topographic surfaces on preosteoblast behaviors[J]. J Biomed Mater Res A, 2013,101(11):3278-3284.
[34] Webster TJ, Ejiofor JU , Increased osteoblast ad-hesion on nanophase metals: Ti, Ti6Al4V, and Co-CrMo[J]. Biomaterials, 2004,25(19):4731-4739.
doi: 10.1016/j.biomaterials.2003.12.002 pmid: 15120519
[35] Colon G, Ward BC, Webster TJ , Increased osteoblast and decreased Staphylococcus epidermidis functions on nanophase ZnO and TiO2[J]. J Biomed Mater Res A, 2006,78(3):595-604.
[36] Tetè S, Mastrangelo F, Quaresima R , et al. Influence of novel nano-titanium implant surface on human osteoblast behavior and growth[J]. Implant Dent, 2010,19(6):520-531.
doi: 10.1097/ID.0b013e3182002eac pmid: 21119356
[37] Rodriguez Y, Baena R, Rizzo S , et al. Nanofeatured titanium surfaces for dental implantology: biological effects, biocompatibility, and safety[J]. J Nanomater, 2017,2017:1-18.
[38] Dalby MJ , McCloy D, Robertson M, et al. Osteo-progenitor response to defined topographies with nanoscale depths[J]. Biomaterials, 2006,27(8):1306-1315.
doi: 10.1016/j.biomaterials.2005.08.028 pmid: 16143393
[39] Zhao G, Zinger O, Schwartz Z , et al. Osteoblast-like cells are sensitive to submicron-scale surface struc-ture[J]. Clin Oral Implants Res, 2006,17(3):258-264.
doi: 10.1111/j.1600-0501.2005.01195.x pmid: 16672020
[40] Gittens RA , McLachlan T, Olivares-Navarrete R, et al. The effects of combined micron-/submicron-scale surface roughness and nanoscale features on cell proliferation and differentiation[J]. Biomaterials, 2011,32(13):3395-3403.
doi: 10.1016/j.biomaterials.2011.01.029
[41] Huang QL, Elkhooly TA, Liu XJ , et al. Effects of hierarchical micro/nano-topographies on the mor-phology, proliferation and differentiation of osteo-blast-like cells[J]. Colloids Surf B Biointerfaces, 2016,145:37-45.
doi: 10.1016/j.colsurfb.2016.04.031
[42] Dalby MJ, Gadegaard N, Oreffo RO , Harnessing nanotopography and integrin-matrix interactions to influence stem cell fate[J]. Nat Mater, 2014,13(6):558-569.
doi: 10.1038/nmat3980 pmid: 24845995
[43] You RC, Li X, Liu Y , et al. Response of filopodia and lamellipodia to surface topography on micropat-terned silk fibroin films[J]. J Biomed Mater Res A, 2014,102(12):4206-4212.
[44] Sowmiya M, Senthilkumar K , Adsorption of RGD tripeptide on anatase (001) surface—a first principle study[J]. Comput Mater Sci, 2015,104:124-129.
doi: 10.1016/j.commatsci.2015.03.040
[45] Gittens RA, Olivares-Navarrete R, Cheng A , et al. The roles of titanium surface micro/nanotopography and wettability on the differential response of human osteoblast lineage cells[J]. Acta Biomaterialia, 2013,9(4):6268-6277.
doi: 10.1016/j.actbio.2012.12.002
[46] Liu Q, Wang W, Zhang L , et al. Involvement of N- cadherin/β-catenin interaction in the micro/nano-topo-graphy induced indirect mechanotransduction[J]. Biomaterials, 2014,35(24):6206-6218.
doi: 10.1016/j.biomaterials.2014.04.068
[1] 王悦,文冰,邓梦婷,李建平. 低能量激光治疗对种植体周围组织愈合的研究进展[J]. 国际口腔医学杂志, 2021, 48(6): 725-730.
[2] 朱俊瑾,王剑. 钛种植体表面银纳米颗粒负载方法的进展[J]. 国际口腔医学杂志, 2021, 48(3): 334-340.
[3] 王佳,李文霞,殷丽华. 缺牙区伴埋伏牙的种植修复策略[J]. 国际口腔医学杂志, 2021, 48(1): 77-81.
[4] 高鑫,曾融生. 骨保护素在口腔领域的研究进展[J]. 国际口腔医学杂志, 2019, 46(3): 316-319.
[5] 刘育豪,袁泉,张士文. 基于共价接枝的钛种植体载药抗菌涂层的研究进展[J]. 国际口腔医学杂志, 2019, 46(2): 228-233.
[6] 向琳,陈晖璐,袁影,张勤,辛娜,宫苹. 降钙素基因相关肽对种植体周围神经、血管再生及骨结合的作用[J]. 国际口腔医学杂志, 2018, 45(5): 509-515.
[7] 王晓娜 赵静辉 储顺礼 周延民. 骨替代材料在口腔种植领域中的成骨效果[J]. 国际口腔医学杂志, 2016, 43(1): 113-.
[8] 樊牮,邹耿森,陈江. 钛种植体表面纳米改性及其与机体免疫应答[J]. 国际口腔医学杂志, 2014, 41(6): 691-693.
[9] 庄秀妹 邓飞龙. 钛表面及其涂层纳米化对骨结合的影响和机制[J]. 国际口腔医学杂志, 2014, 41(4): 427-430.
[10] 刘媛媛1 李果1 任家银1 赵书平1 聂晶2 王虎1. 纳米钛膜种植体-骨界面的骨整合研究[J]. 国际口腔医学杂志, 2012, 39(3): 312-316.
[11] 李卓睿1综述 柳忠豪2审校. 即刻种植种植体周围骨缺损间隙的处理[J]. 国际口腔医学杂志, 2012, 39(1): 120-123.
[12] 王鲲鹏综述 张剑明审校. 即刻种植的研究进展[J]. 国际口腔医学杂志, 2012, 39(1): 136-139.
[13] 王亚敏综述 宋光保审校. 放射治疗对口腔种植的影响[J]. 国际口腔医学杂志, 2011, 38(2): 204-206.
[14] 张静超,莫安春,. 钛种植体表面微结构对成骨细胞影响的研究进展[J]. 国际口腔医学杂志, 2007, 34(03): 207-209.
[15] 张悦,夏海斌,. 碱热处理制备生物活性钛种植体[J]. 国际口腔医学杂志, 2007, 34(03): 216-219.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张京剧. 青年期至中年期颅面复合体变化的头影测量研究[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 刘玲. 镍铬合金中铍对可铸造性和陶瓷金属结合力的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 王昆润. 在种植体上制作固定义齿以后下颌骨密度的动态变化[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 王昆润. 重型颌面部炎症死亡和康复病例的实验室检查指标比较[J]. 国际口腔医学杂志, 1999, 26(06): .
[5] 逄键梁. 两例外胚层发育不良儿童骨内植入种植体后牙槽骨生长情况[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 温秀杰. 氟化物对牙本质脱矿抑制作用的体外实验研究[J]. 国际口腔医学杂志, 1999, 26(05): .
[7] 杨春惠. 耳颞神经在颞颌关节周围的分布[J]. 国际口腔医学杂志, 1999, 26(04): .
[8] 王昆润. 牙周炎加重期应选用何种抗生素[J]. 国际口腔医学杂志, 1999, 26(04): .
[9] 杨儒壮 孙宏晨 欧阳喈. 纳米级高分子支架材料在组织工程中的研究进展[J]. 国际口腔医学杂志, 2004, 31(02): 126 -128 .
[10] 严超然,李龙江. 肿瘤靶向药物载体系统的研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .