国际口腔医学杂志 ›› 2021, Vol. 48 ›› Issue (4): 491-496.doi: 10.7518/gjkq.2021067

• 综述 • 上一篇    

数字化技术在直丝弓托槽间接粘接中的应用

钮晔(),曾芸婷,曾悦翔,张泽宇,肖立伟()   

  1. 中南大学湘雅二医院口腔正畸科 长沙 410011
  • 收稿日期:2021-01-03 修回日期:2021-03-26 出版日期:2021-07-01 发布日期:2021-06-30
  • 通讯作者: 肖立伟
  • 作者简介:钮晔,住院医师,硕士,Email: newyear2030@163.com

Application of digital technology in indirect bonding of straight wire brackets

Niu Ye(),Zeng Yunting,Zeng Yuexiang,Zhang Zeyu,Xiao Liwei()   

  1. Dept. of Orthodontics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
  • Received:2021-01-03 Revised:2021-03-26 Online:2021-07-01 Published:2021-06-30
  • Contact: Liwei Xiao

摘要:

直丝弓矫治减少了弓丝弯制,强调托槽粘接的精准性,而托槽间接粘接技术较直接粘接具有定位精准、椅旁操作时间短的优点,因此间接粘接技术在直丝弓矫治领域受到青睐。然而传统间接粘接方法实验室操作过于繁琐。近几年数字化技术的应用和发展促使直丝弓托槽间接粘接趋向于精准化和个性化,并极大地简化了操作步骤,带来了质的改变。本文将就数字化三维牙颌模型的重建、3D打印等技术在唇侧直丝弓托槽间接粘接领域的应用与研究进展作一综述。

关键词: 数字化, 托槽, 间接粘接, 三维牙颌模型

Abstract:

Indirect bonding of brackets is characterised by more accurate positioning and shorter chair time compared with direct bonding. The straight wire technique reduces the archwire bending and emphasises the accuracy of bonding positions of brackets. Thus, indirect bonding is favoured in straight wire technique. However, the laboratory operation of the conventional indirect bonding method is very complex. In recent years, with the advance digital technology, indirect bonding of straight wire brackets has become more accurate, personalised and simplified. This, some remarkable changes have been obtained. This article reviews the application and development of digital technology, such as three-dimensional(3D) dental cast reconstruction and 3D printing, in the indirect bonding of labial straight wire brackets.

Key words: digital, bracket, indirect bonding, three-dimensional dental cast

中图分类号: 

  • R783.5
[1] Silverman E, Cohen M, Gianelly AA, et al. A universal direct bonding system for both metal and plastic brackets[J]. Am J Orthod, 1972,62(3):236-244.
pmid: 4559001
[2] Yildirim K, Saglam-Aydinatay B. Comparative assessment of treatment efficacy and adverse effects during nonextraction orthodontic treatment of Class Ⅰmalocclusion patients with direct and indirect bon-ding: A parallel randomized clinical trial[J]. Am J Orthod Dentofacial Orthop, 2018, 154(1): 26.e1-34.e1.
[3] 郭昱成, 李沐嘉, 董明, 等. 改良式间接粘接技术在正畸临床中的应用研究[J]. 实用口腔医学杂志, 2018,34(3):373-376.
Guo YC, Li MJ, Dong M, et al. Application of modi-fied indirect bonding technique in orthodontic treat-ment[J]. J Pract Stomatol, 2018,34(3):373-376.
[4] Bozelli JV, Bigliazzi R, Barbosa HA, et al. Comparative study on direct and indirect bracket bonding techniques regarding time length and bracket detachment[J]. Dental Press J Orthod, 2013,18(6):51-57.
doi: 10.1590/S2176-94512013000600009
[5] Newman GV. Direct and indirect bonding of brackets[J]. J Clin Orthod, 1974,8(5):264-272.
pmid: 4600553
[6] Pamukcu H, Ozsoy OP, Dagalp R. In vitro and in vivo comparison of orthodontic indirect bonding resins: a prospective study[J]. Niger J Clin Pract, 2018,21(5):614-623.
doi: 10.4103/njcp.njcp_252_17 pmid: 29735863
[7] 陈慧, 郭宏铭, 白玉兴, 等. CAD/CAM转移托盘粘接托槽位置准确性研究[J]. 北京口腔医学, 2012,20(5):270-273.
Chen H, Guo HM, Bai YX, et al. A comparison of virtual and actual bracket position orientated by CAD/CAM indirect bonding method[J]. Beijing J Stomatol, 2012,20(5):270-273.
[8] Duarte MEA, Gribel BF, Spitz A, et al. Reproducibi-lity of digital indirect bonding technique using three-dimensional (3D) models and 3D-printed transfer trays[J]. Angle Orthod, 2020,90(1):92-99.
doi: 10.2319/030919-176.1
[9] Ciuffolo F, Epifania E, Duranti G, et al. Rapid prototyping: a new method of preparing trays for indirect bonding[J]. Am J Orthod Dentofacial Orthop, 2006,129(1):75-77.
doi: 10.1016/j.ajodo.2005.10.005
[10] 黄晓红, 许亮, 林珊. 双层透明压膜片转移托盘间接粘结托槽的效果评价[J]. 上海口腔医学, 2016,25(6):734-737
Huang XH, Xu L, Lin S. Effects of double transparent pressure diaphragm transfer tray on indirect bonding[J]. Shanghai J Stomatol, 2016,25(6):734-737.
[11] Echarri P, Kim TW. Double transfer trays for indirect bonding[J]. J Clin Orthod, 2004,38(1):8-13.
pmid: 15004397
[12] Sachdeva R, Frugé JF, Frugé AM, et al. SureSmile: a report of clinical findings[J]. J Clin Orthod, 2005,39(5):297-314.
pmid: 15961890
[13] Perri A, Gracco A, Siviero L, et al. Customized orthodontics: the Insignia system[J]. Int J Orthod Milwaukee, 2014,25(4):17-20.
[14] Garino F, Garino GB. Computer-aided interactive indirect bonding[J]. Prog Orthod, 2005,6(2):214-223.
[15] Swennen GR, Mommaerts MY, Abeloos J, et al. A cone-beam CT based technique to augment the 3D virtual skull model with a detailed dental surface[J]. Int J Oral Maxillofac Surg, 2009,38(1):48-57.
doi: 10.1016/j.ijom.2008.11.006
[16] Gül Amuk N, Karsli E, Kurt G. Comparison of dental measurements between conventional plaster mo-dels, digital models obtained by impression scanning and plaster model scanning[J]. Int Orthod, 2019,17(1):151-158.
doi: 10.1016/j.ortho.2019.01.014
[17] Soto-Álvarez C, Fonseca GM, Viciano J, et al. Relia-bility, reproducibility and validity of the conventional buccolingual and mesiodistal measurements on 3D dental digital models obtained from intra-oral 3D scanner[J]. Arch Oral Biol, 2020,109:104575.
doi: 10.1016/j.archoralbio.2019.104575
[18] Ko HC, Liu WT, Hou D, et al. Agreement of treatment recommendations based on digital vs plaster dental models[J]. Am J Orthod Dentofacial Orthop, 2019,155(1):135-142.
doi: 10.1016/j.ajodo.2018.03.018
[19] Kirschneck C, Kamuf B, Putsch C, et al. Conformity, reliability and validity of digital dental models created by clinical intraoral scanning and extraoral plaster model digitization workflows[J]. Comput Biol Med, 2018,100:114-122.
doi: 10.1016/j.compbiomed.2018.06.035
[20] McLaughlin RP, Bennett JC. Bracket placement with the preadjusted appliance[J]. J Clin Orthod, 1995,29(5):302-311.
pmid: 8617853
[21] El-Timamy AM, El-Sharaby FA, Eid FH, et al. Three-dimensional imaging for indirect-direct bonding[J]. Am J Orthod Dentofacial Orthop, 2016,149(6):928-931.
doi: 10.1016/j.ajodo.2015.12.009 pmid: 27242004
[22] 万贤凤, 张文斌, 章锦才, 等. Damon Q自锁托槽在数字化牙颌模型上的模拟定位研究[J]. 华西口腔医学杂志, 2015,33(5):500-503.
Wan FX, Zhang WB, Zhang JC, et al. Preliminary stu-dy on positioning of Damon Q self-ligating brackets in a digital integration model[J]. West China J Stoma-tol, 2015,33(5):500-503.
[23] 林泽, 陈军, 李雪. 数字化3D打印技术在口腔舌侧正畸托槽粘接中应用研究[J]. 中国实用口腔科杂志, 2016,9(2):104-107.
Lin Z, Chen J, Li X. Application study of digital 3D printing in individual lingual orthodontic brackets[J]. Chin J Pract Stomatol, 2016,9(2):104-107.
[24] 田野, 吴清柱, 丁静, 等. 3D打印技术对口腔舌侧正畸托槽粘接的效果观察[J]. 现代实用医学, 2016,28(8):1101-1103.
Tian Y, Wu QZ, Ding J, et al. Effect of 3D printing technology on bonding of lingual orthodontic brac-kets[J]. Modern Pract Med, 2016,28(8):1101-1103.
[25] 陈建宇, 张志光, 李子夫. 选择性激光熔化技术在口腔医学领域中的应用[J]. 国际口腔医学杂志, 2014,41(1):97-101
Chen JY, Zhang ZG, Li ZF. Application of selective Laser melting technique in stomatology[J]. J Int Sto-matol, 2014,41(1):97-101.
[26] 韩宇, 郭宏铭, 白玉兴, 等. 选区激光熔化技术制作钛合金个体化托槽槽沟的精度研究[J]. 北京口腔医学, 2016,24(1):44-45
Han Y, Guo HM, Bai YX, et al. The study on the accuracy of titanium brackets’s slot made by the se-lective Laser melting technology[J]. Beijing J Stoma-tol, 2016,24(1):44-45.
[27] Brown MW, Koroluk L, Ko CC, et al. Effectiveness and efficiency of a CAD/CAM orthodontic bracket system[J]. Am J Orthod Dentofacial Orthop, 2015,148(6):1067-1074.
doi: 10.1016/j.ajodo.2015.07.029
[28] Sha HN, Choi SH, Yu HS, et al. Debonding force and shear bond strength of an array of CAD/CAM-based customized orthodontic brackets, placed by indirect bonding‒an In Vitro study[J]. PLoS One, 2018,13(9):e0202952.
doi: 10.1371/journal.pone.0202952
[29] Pamukçu H, Özsoy ÖP. Indirect bonding revisited[J]. Turk J Orthod, 2016,29(3):80-86.
doi: 10.5152/TurkJOrthod.
[30] 李杰, 马文盛. 唇侧间接粘接技术进展的研究[J]. 现代口腔医学杂志, 2019,33(05):314-317.
Li J, Ma WS. Study on the development of indirect bonding of labial brackets[J]. J Modern Stomatol, 2019,33(5):314-317.
[31] Castilla AE, Crowe JJ, Moses JR, et al. Measurement and comparison of bracket transfer accuracy of five indirect bonding techniques[J]. Angle Orthod, 2014,84(4):607-614.
doi: 10.2319/070113-484.1 pmid: 24555689
[32] Schmid J, Brenner D, Recheis W, et al. Transfer accuracy of two indirect bonding techniques-an in vitro study with 3D scanned models[J]. Eur J Orthod, 2018,40(5):549-555.
doi: 10.1093/ejo/cjy006
[33] Son KH, Park JW, Lee DK, et al. New virtual orthodontic treatment system for indirect bonding using the stereolithographic technique[J]. Korean J Orthod, 2011,41(2):138.
doi: 10.4041/kjod.2011.41.2.138
[34] Kim J, Chun YS, Kim M. Accuracy of bracket positions with a CAD/CAM indirect bonding system in posterior teeth with different cusp heights[J]. Am J Orthod Dentofacial Orthop, 2018,153(2):298-307.
doi: 10.1016/j.ajodo.2017.06.017
[35] Xue CR, Xu H, Guo YW, et al. Accurate bracket placement using a computer-aided design and computer-aided manufacturing-guided bonding device: an in vivo study[J]. Am J Orthod Dentofacial Orthop, 2020,157(2):269-277.
doi: 10.1016/j.ajodo.2019.03.022
[36] 陈继民, 孙佳齐, 晏恒峰. 3D打印技术在口腔正畸中的应用进展[J]. 应用激光, 2017,37(5):744-751
Chen JM, Sun JQ, Yan HF. A review of 3D printing techniques for oral orthodontics[J]. Appl Laser, 2017,37(5):744-751.
[37] 张达, 王林川, 周彦恒, 等. 3D打印间接粘接托槽精度[J]. 北京大学学报(医学版), 2017,49(4):704-708.
Zhang D, Wang LC, Zhou YH, et al. Precision of three-dimensional printed brackets[J]. J Peking Univ (Heal Sci), 2017,49(4):704-708.
[1] 刘艺,刘奕. 上颌埋伏阻生尖牙与牙弓及腭部形态的相关性[J]. 国际口腔医学杂志, 2021, 48(2): 243-248.
[2] 赵志河. 数字化正畸中前牙转矩设计的比较[J]. 国际口腔医学杂志, 2021, 48(1): 1-6.
[3] 王奔,许喆桢,韦曦. 数字化微创技术在牙髓根尖周病学中的应用与进展[J]. 国际口腔医学杂志, 2021, 48(1): 110-118.
[4] 王勇. 全口义齿数字化技术分析[J]. 国际口腔医学杂志, 2020, 47(1): 1-9.
[5] 蔡潇潇. 美学区数字化种植策略与流程[J]. 国际口腔医学杂志, 2019, 46(6): 621-630.
[6] 赖文莉. 无托槽隐形矫治技术推磨牙向后的临床应用策略[J]. 国际口腔医学杂志, 2019, 46(4): 373-382.
[7] 冯旭,张祎,李梦红,刘楠,王六一,胡敏. 无托槽隐形矫治对牙周健康影响的研究进展[J]. 国际口腔医学杂志, 2019, 46(2): 166-170.
[8] 张婷婷,胡建. 数字化导板与动态导航在口腔种植应用中的研究进展[J]. 国际口腔医学杂志, 2019, 46(1): 99-104.
[9] 杜雪,瞿方,刘伟才. 三维虚拟牙科患者的建立及其在美学修复中的应用[J]. 国际口腔医学杂志, 2018, 45(6): 695-702.
[10] 柯正建,黄诗言,徐舒豪,李小兵. 个体化口腔健康宣教对无托槽隐形矫治青少年患者口腔卫生状况的影响[J]. 国际口腔医学杂志, 2018, 45(5): 534-538.
[11] 吕晶, 凌均棨. 根管定位数字化导板的研究进展[J]. 国际口腔医学杂志, 2018, 45(2): 233-238.
[12] 荆璇, 武秀萍, 王军. 舌侧矫治技术的临床研究进展[J]. 国际口腔医学杂志, 2018, 45(1): 100-105.
[13] 陈静, 黄晓峰. 激光在口腔正畸临床应用中的进展[J]. 国际口腔医学杂志, 2017, 44(6): 712-716.
[14] 刘尚愚, 冯云霞. 三维数字化技术在口腔正畸学中的应用[J]. 国际口腔医学杂志, 2017, 44(3): 350-353.
[15] 赵夫健,王臻石,石连水. 托槽表面抗菌改性的研究现状[J]. 国际口腔医学杂志, 2016, 43(2): 239-243.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 冯璐,孟文霞. 常见口腔黏膜疾病患者行种植修复相关问题的研究进展[J]. 国际口腔医学杂志, 2021, 48(2): 147 -155 .
[2] 王立冬,马文,付帅,张长彬,崔庆赢,梁燕,黎明. 不同方法制作正颌手术数字化牙合板的研究及精确性分析[J]. 国际口腔医学杂志, 2021, 48(2): 156 -164 .
[3] 李米雪子,张琛. 椅旁计算机辅助设计/计算机辅助制作髓腔固位冠修复根管治疗后磨牙的临床考量[J]. 国际口腔医学杂志, 2021, 48(3): 274 -279 .
[4] 张世珍,赖文莉. 骨性Ⅲ类错牙合畸形上颌骨前牵引方法及辅助扩弓的研究进展[J]. 国际口腔医学杂志, 2021, 48(3): 354 -361 .
[5] 赵吉宏. 口腔局部麻醉新概念[J]. 国际口腔医学杂志, 2021, 48(4): 373 -379 .
[6] 朱轩智,赵蕾. 甲状腺功能减退症与牙周炎相关性的研究进展[J]. 国际口腔医学杂志, 2021, 48(4): 380 -384 .
[7] 丁旭,李鑫,李艳,夏博园,于维先. 氧化应激和线粒体质量控制与牙周炎关系的研究进展[J]. 国际口腔医学杂志, 2021, 48(4): 385 -390 .
[8] 赵文俊,陈宇. 引导组织/骨再生牙周功能梯度膜的研究进展[J]. 国际口腔医学杂志, 2021, 48(4): 391 -397 .
[9] 施丹妮,杨鑫,吴建勇. 锥形束CT三维头影测量参考坐标系的研究进展[J]. 国际口腔医学杂志, 2021, 48(4): 398 -404 .
[10] 邵冰婷,曹丹,严斌. 影像学预测上颌尖牙阻生的研究进展[J]. 国际口腔医学杂志, 2021, 48(4): 405 -410 .