国际口腔医学杂志 ›› 2020, Vol. 47 ›› Issue (4): 478-483.doi: 10.7518/gjkq.2020071

• 综述 • 上一篇    下一篇

巨噬细胞极化参与正畸牙移动的研究进展

赵玉洁1,管晓燕1,2,李小兰3,陈琦君1,2,王倩3,刘建国1,3()   

  1. 1.遵义医科大学口腔医学院 遵义 563006
    2.遵义医科大学附属口腔医院正畸科 遵义 563099
    3.贵州省普通高等学校口腔疾病研究特色重点实验室 遵义 563006
  • 收稿日期:2019-10-14 修回日期:2020-02-13 出版日期:2020-07-01 发布日期:2020-07-10
  • 通讯作者: 刘建国 E-mail:13087891001@163.com
  • 作者简介:赵玉洁,住院医师,硕士,Email:410398380@qq.com
  • 基金资助:
    贵州省重点学科建设项目. 黔学位合字ZDXK[2017]5号;省市科技合作专项资金. 省市科合[2014]41号;遵义市科技局专家工作站建设项目. 遵市科合[2016]18号

Research progress on macrophage polarization involved in the regulation of orthodontic tooth movement

Yujie Zhao1,Xiaoyan Guan1,2,Xiaolan Li3,Qijun Chen1,2,Qian Wang3,Jianguo Liu1,3()   

  1. 1. School of Stomatology, Zunyi Medical University, Zunyi 563006, China
    2. Dept. of Orthodontics, Hospital of Stomatology, Zunyi Medical University, Zunyi 563099, China
    3. The Special Key Laboratory of Oral Diseases Research, Institution of Higher Education in Guizhou Province, Zunyi 563006, China
  • Received:2019-10-14 Revised:2020-02-13 Online:2020-07-01 Published:2020-07-10
  • Contact: Jianguo Liu E-mail:13087891001@163.com
  • Supported by:
    This study was supported by Program for the Key Discipline Construction Project of Guizhou Province. Guizhou Degree Word ZDXK [2017] No. 5;Provincial and Municipal Science and Technology Cooperation Special Fund Project. Province and City Branch [2014] No. 41;Expert Workstation Construction Project of Zunyi Science and Technology Bureau. Zunyi City Branch [2016] No. 18

摘要:

正畸牙在正畸力的作用下发生移动。其中,颌骨的可塑性、牙骨质的抗压性及牙周膜内环境的稳定性是正畸牙周组织改建与牙齿移动的生物基础。施加于牙齿的正畸力改变的牙周局部微环境促进了巨噬细胞向M1型极化,并分泌炎性因子促进牙槽骨吸收和随后的正畸牙移动(orthodontic tooth movement,OTM),而M2型巨噬细胞则发挥抗炎作用,促进牙周组织修复。本文就M1、M2型巨噬细胞在OTM过程中的作用以及正畸治疗中影响巨噬细胞极化的因素进行综述,以期为未来巨噬细胞在正畸领域中的研究和加速OTM提供理论基础。

关键词: 巨噬细胞极化, 正畸牙移动, 牙根吸收, 正畸治疗

Abstract:

Teeth move under orthodontic force. The plasticity of jawbone, compressive resistance of cementum, and stability of periodontal membrane environment are the biological bases of orthodontic periodontal tissue reconstruction and tooth movement. Orthodontic force on teeth affects the local periodontal microenvironment, which promotes macrophage polarization. In M1-type macrophages, the orthodontic tooth movement (OTM) secretion of inflammatory factors is conducive to alveolar bone absorption and subsequent OTM. M2-type macrophages play an anti-inflammatory role and promote the repair of periodontal tissues. This article reviews the role of M1-type and M2-type macrophages in OTM and the factors that influence macrophage polarization in orthodontic treatment. This article aims to provide theoretical basis for future research on macrophages in the orthodontic field and to accelerate OTM.

Key words: macrophage polarization, orthodontic tooth movement, root resorption, orthodontic treatment

中图分类号: 

  • R783.5

图 1

巨噬细胞参与OTM的相关生物学机制"

[1] Yang GX, Chen XY, Yan Z, et al. CD11b promotes the differentiation of osteoclasts induced by RANKL through the spleen tyrosine kinase signalling pathway[J]. J Cell Mol Med, 2017,21(12):3445-3452.
doi: 10.1111/jcmm.13254 pmid: 28661042
[2] Wang YH, Smith W, Hao DJ, et al. M1 and M2 macrophage polarization and potentially therapeutic naturally occurring compounds[J]. Int Immunophar-macol, 2019,70:459-466.
[3] Wasnik S, Rundle CH, Baylink DJ, et al. 1,25-Dihy-droxyvitamin D suppresses M1 macrophages and promotes M2 differentiation at bone injury sites[J]. JCI Insight, 2018,3(17):98773.
doi: 10.1172/jci.insight.98773 pmid: 30185660
[4] Huang CB, Alimova Y, Ebersole JL. Macrophage polarization in response to oral commensals and pathogens[J]. Pathog Dis, 2016,74(3): ftw011.
doi: 10.1093/femspd/ftw011 pmid: 26884502
[5] Juban G, Chazaud B. Metabolic regulation of macro-phages during tissue repair: insights from skeletal muscle regeneration[J]. FEBS Lett, 2017,591(19):3007-3021.
doi: 10.1002/1873-3468.12703 pmid: 28555751
[6] 阮静瑶, 陈必成, 张喜乐, 等. 巨噬细胞M1/M2极化的信号通路研究进展[J]. 免疫学杂志, 2015,31(10):911-917.
Ruan JY, Chen BC, Zhang XL, et al. Progress in signaling pathways of macrophage M1/2 polariza-tion[J]. Immunol J, 2015,31(10):911-917.
[7] Lurier EB, Dalton D, Dampier W, et al. Transcrip-tome analysis of IL-10-stimulated (M2c) macrophages by next-generation sequencing[J]. Immunobiology, 2017,222(7):847-856.
doi: 10.1016/j.imbio.2017.02.006 pmid: 28318799
[8] Annamalai RT, Turner PA, Carson WF 4th, et al. Harnessing macrophage-mediated degradation of gelatin microspheres for spatiotemporal control of BMP2 release[J]. Biomaterials, 2018,161:216-227.
doi: 10.1016/j.biomaterials.2018.01.040 pmid: 29421557
[9] Nuñez SY, Ziblat A, Secchiari F, et al. Human M2 macrophages limit NK cell effector functions through secretion of TGF-β and engagement of CD85j[J]. J Immunol, 2018,200(3):1008-1015.
doi: 10.4049/jimmunol.1700737 pmid: 29282306
[10] Hu YL, Zhang HW, Lu Y, et al. Class A scavenger receptor attenuates myocardial infarction-induced cardiomyocyte necrosis through suppressing M1 macrophage subset polarization[J]. Basic Res Car-diol, 2011,106(6):1311-1328.
[11] Li Y, Zheng W, Liu JS, et al. Expression of osteo-clastogenesis inducers in a tissue model of perio-dontal ligament under compression[J]. J Dent Res, 2011,90(1):115-120.
doi: 10.1177/0022034510385237 pmid: 20940359
[12] Tosi MF. Innate immune responses to infection[J]. J Allergy Clin Immunol, 2005,116(2):241-249.
[13] Koyama Y, Mitsui N, Suzuki N, et al. Effect of com-pressive force on the expression of inflammatory cytokines and their receptors in osteoblastic Saos-2 cells[J]. Arch Oral Biol, 2008,53(5):488-496.
pmid: 18241837
[14] Zhong JX, Chen JN, Weinkamer R, et al. In vivo effects of different orthodontic loading on root re-sorption and correlation with mechanobiological stimulus in periodontal ligament[J]. J R Soc Inter-face, 2019,16(154):20190108.
[15] Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets[J]. Nat Rev Immunol, 2011,11(11):723-737.
pmid: 21997792
[16] He D, Kou X, Yang R, et al. M1-like macrophage polarization promotes orthodontic tooth movement[J]. J Dent Res, 2015,94(9):1286-1294.
doi: 10.1177/0022034515589714 pmid: 26124217
[17] Konermann A, Beyer M, Deschner J, et al. Human periodontal ligament cells facilitate leukocyte recruit-ment and are influenced in their immunomodulatory function by Th17 cytokine release[J]. Cell Immunol, 2012,272(2):137-143.
doi: 10.1016/j.cellimm.2011.10.020 pmid: 22119482
[18] Wang Y, Zhang HW, Sun W, et al. Macrophages mediate corticotomy-accelerated orthodontic tooth movement[J]. Sci Rep, 2018,8(1):16788.
pmid: 30429494
[19] Frith JC, Mönkkönen J, Auriola S, et al. The molecular mechanism of action of the antiresorptive and antiin-flammatory drug clodronate: evidence for the forma-tion in vivo of a metabolite that inhibits bone resorp-tion and causes osteoclast and macrophage apoptosis[J]. Arthritis Rheum, 2001,44(9):2201-2210.
doi: 10.1002/1529-0131(200109)44:9<2201::aid-art374>3.0.co;2-e pmid: 11592386
[20] Feller L, Khammissa RA, Thomadakis G, et al. Apical external root resorption and repair in orthodontic tooth movement: biological events[J]. Biomed Res Int, 2016,2016:4864195.
[21] Kamat M, Puranik R, Vanaki S, et al. An insight into the regulatory mechanisms of cells involved in resor-ption of dental hard tissues[J]. J Oral Maxillofac Pathol, 2013,17(2):228-233.
doi: 10.4103/0973-029X.119736 pmid: 24250084
[22] Iglesias-Linares A, Hartsfield JK Jr. Cellular and molecular pathways leading to external root resor-ption[J]. J Dent Res, 2017,96(2):145-152.
pmid: 27811065
[23] He D, Kou X, Luo Q, et al. Enhanced M1/M2 ma-crophage ratio promotes orthodontic root resorption[J]. J Dent Res, 2015,94(1):129-139.
doi: 10.1177/0022034514553817 pmid: 25344334
[24] Makrygiannakis MA, Kaklamanos EG, Athanasiou AE. Effects of systemic medication on root resor-ption associated with orthodontic tooth movement: a systematic review of animal studies[J]. Eur J Orthod, 2019,41(4):346-359.
doi: 10.1093/ejo/cjy048 pmid: 29992228
[25] Abdelmagid SM, Barbe MF, Safadi FF. Role of in-flammation in the aging bones[J]. Life Sci, 2015,123:25-34.
doi: 10.1016/j.lfs.2014.11.011 pmid: 25510309
[26] Konermann A, Stabenow D, Knolle PA, et al. Re-gulatory role of periodontal ligament fibroblasts for innate immune cell function and differentiatio[J]. Innate Immun, 2012,18(5):745-752.
pmid: 22436844
[27] Wolf M, Lossdörfer S, Craveiro R, et al. High-mobi-lity group box protein-1 released by human-perio-dontal ligament cells modulates macrophage migra-tion and activity in vitro[J]. Innate Immun, 2014,20(7):688-696.
pmid: 24107514
[28] Meikle MC. The tissue, cellular, and molecular re-gulation of orthodontic tooth movement: 100 years after Carl Sandstedt[J]. Eur J Orthod, 2006,28(3):221-240.
doi: 10.1093/ejo/cjl001 pmid: 16687469
[29] Gentek R, Molawi K, Sieweke MH. Tissue macro-phage identity and self-renewal[J]. Immunol Rev, 2014,262(1):56-73.
doi: 10.1111/imr.12224 pmid: 25319327
[30] Zeng M, Kou X, Yang R, et al. Orthodontic force induces systemic inflammatory monocyte responses[J]. J Dent Res, 2015,94(9):1295-1302.
doi: 10.1177/0022034515592868 pmid: 26130260
[31] Yamaguchi T, Movila A, Kataoka S, et al. Proinfla-mmatory M1 macrophages inhibit RANKL-induced osteoclastogenesis[J]. Infect Immun, 2016,84(10):2802-2812.
doi: 10.1128/IAI.00461-16 pmid: 27456834
[32] Pajarinen J, Lin T, Gibon E, et al. Mesenchymal stem cell-macrophage crosstalk and bone healing[J]. Biomaterials, 2019,196:80-89.
doi: 10.1016/j.biomaterials.2017.12.025 pmid: 29329642
[33] Schlundt C, El Khassawna T, Serra A, et al. Macro-phages in bone fracture healing: their essential role in endochondral ossification[J]. Bone, 2018,106:78-89.
doi: 10.1016/j.bone.2015.10.019 pmid: 26529389
[34] Zhang R, Liang Y, Wei SX. M2 macrophages are closely associated with accelerated clavicle fracture healing in patients with traumatic brain injury: a retrospective cohort study[J]. J Orthop Surg Res, 2018,13(1):213.
doi: 10.1186/s13018-018-0926-7 pmid: 30157885
[35] Sinder BP, Pettit AR, McCauley LK. Macrophages: their emerging roles in bone[J]. J Bone Miner Res, 2015,30(12):2140-2149.
doi: 10.1002/jbmr.2735 pmid: 26531055
[36] Sandberg OH, Tätting L, Bernhardsson ME, et al. Temporal role of macrophages in cancellous bone healing[J]. Bone, 2017,101:129-133.
doi: 10.1016/j.bone.2017.04.004 pmid: 28414141
[37] Loi F, Córdova LA, Zhang R, et al. The effects of immunomodulation by macrophage subsets on osteo-genesis in vitro[J]. Stem Cell Res Ther, 2016,7:15.
pmid: 26801095
[1] 刘晔,洪润丹,王志国,刘涵云,孟琛达,王茹,徐全臣. 人单核细胞和外周血单个核细胞衍生的巨噬细胞极化特性的比较[J]. 国际口腔医学杂志, 2020, 47(3): 286-292.
[2] 陈艺尹,刘俊圻,李承浩. 牙槽突裂的裂隙特点及正畸治疗对唇腭裂患者牙槽突植骨术的影响[J]. 国际口腔医学杂志, 2020, 47(3): 345-350.
[3] 李寒月,夏露露,华先明. 牙周加速成骨正畸临床应用效果的研究进展[J]. 国际口腔医学杂志, 2020, 47(2): 206-211.
[4] 陈雪,李纾. 牙颈部外吸收[J]. 国际口腔医学杂志, 2019, 46(5): 516-521.
[5] 陈玉,姜欢,刘楠,陆晨萌,唐中元,韩茹钰,胡敏. 正畸治疗对骨性Ⅱ类错畸形患者上气道及周围结构变化的影响[J]. 国际口腔医学杂志, 2019, 46(5): 578-584.
[6] 高洁,马锐,葛振林. 热激活镍钛弓丝矫治效率的系统评价[J]. 国际口腔医学杂志, 2019, 46(4): 393-399.
[7] 何育薇,张智君,谢雨朗,梁英豪. 青少年正畸患者的心理状况研究[J]. 国际口腔医学杂志, 2019, 46(4): 413-419.
[8] 杨亚,陈鹏,戴红卫,张林. 大鼠正畸牙移动过程中转化生长因子-β/Smad信号通路相关蛋白质在Malassez上皮剩余细胞的表达变化[J]. 国际口腔医学杂志, 2019, 46(3): 270-276.
[9] 高鑫,曾融生. 骨保护素在口腔领域的研究进展[J]. 国际口腔医学杂志, 2019, 46(3): 316-319.
[10] 李锦锦, 潘剑. 自体牙移植及其结合正畸治疗的研究进展[J]. 国际口腔医学杂志, 2018, 45(1): 91-96.
[11] 徐晶, 张晓蓉. 正畸治疗对上气道形态影响的研究进展[J]. 国际口腔医学杂志, 2017, 44(5): 544-449.
[12] 潘颖丹, 刘艺琴, 肖立伟. 替牙期唇腭裂患者的正畸治疗[J]. 国际口腔医学杂志, 2017, 44(4): 380-384.
[13] 姚霜, 刘晓君, 周治, 杨鸘, 季娟娟, 周新, 沈勇. 咬合调整对牙周炎正畸治疗患者牙周状况的影响[J]. 国际口腔医学杂志, 2017, 44(1): 50-54.
[14] 崔跃, 姜欢, 胡敏. 破骨细胞蛋白酪氨酸磷酸酶与正畸移动牙牙根吸收的关系[J]. 国际口腔医学杂志, 2017, 44(1): 87-91.
[15] 普盼君,路莹,葛天歌,张沙,陈泽文,黄宁. 正畸患者付出与收益的调查与研究[J]. 国际口腔医学杂志, 2016, 43(6): 654-657.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张京剧. 青年期至中年期颅面复合体变化的头影测量研究[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 王昆润. 修补颌骨缺损的新型生物学相容材料[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 王昆润. 二甲亚砜和双氯芬酸并用治疗根尖周炎[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 张新春. 桩冠修复与无髓牙的保护[J]. 国际口腔医学杂志, 1999, 26(06): .
[5] 潘劲松. 颈总动脉指压和颈内动脉球囊阻断试验在大脑血液动力学中的不同影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 王昆润. 后牙冠根斜形牙折的治疗[J]. 国际口腔医学杂志, 1999, 26(05): .
[7] 轩东英. 不同赋形剂对氢氧化钙抗菌效果的影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[8] 王昆润. 下颔骨成形术用网状钛板固定植骨块[J]. 国际口腔医学杂志, 1999, 26(04): .
[9] 戴青. 口腔念珠菌病的新分类[J]. 国际口腔医学杂志, 1999, 26(04): .
[10] 蔡霞,李成章. 前列腺素E_2受体EP亚型在牙周炎发病机制中的作用[J]. 国际口腔医学杂志, 2005, 32(06): 461 -462 .