国际口腔医学杂志 ›› 2020, Vol. 47 ›› Issue (5): 506-514.doi: 10.7518/gjkq.2020032

• 口腔微生态专栏 • 上一篇    下一篇

龋病牙菌斑微生态研究进展

杨志雷(),刘宝盈()   

  1. 郑州大学第一附属医院口腔科 郑州 450052
  • 收稿日期:2019-11-28 修回日期:2020-05-28 出版日期:2020-09-01 发布日期:2020-09-16
  • 通讯作者: 刘宝盈
  • 作者简介:杨志雷,硕士,Email: 1074851596@qq.com
  • 基金资助:
    郑州大学第一附属医院青年创新基金(YNQN2017064)

Research progress on the microecology of dental plaque in caries

Yang Zhilei(),Liu Baoying()   

  1. Dept. of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
  • Received:2019-11-28 Revised:2020-05-28 Online:2020-09-01 Published:2020-09-16
  • Contact: Baoying Liu
  • Supported by:
    Youth Innovation Fund Project of The First Affiliated Hospital of Zhengzhou University(YNQN2017064)

摘要:

“生态菌斑学说”的提出为龋病病因的探索指出了新的方向,该学说认为龋病的发生是由牙面菌斑生物膜的菌群微生态失衡,向产酸、耐酸的菌群倾斜所介导的,可由多种因素导致。以16S核糖体RNA(rRNA)基因为基础的高通量测序等微生物检测技术的出现,为全面研究菌斑微生态提供了可能,对龋病牙菌斑微生态有了更深一步的认识。健康与龋病牙菌斑菌群的主要区别在于,在龋病发生过程中选择产酸与耐酸菌,而不是包括核心微生物组在内的主要微生物群。不同个体可具有不同的龋病相关微生物组成,龋病的发生伴随着菌斑微生物多样性降低、均匀度增加、物种间协同作用增强、代谢改变等一系列生态结构与功能变化。本文对龋病牙菌斑微生态相关方面的研究进展进行综述。

关键词: 龋病, 微生物多样性, 菌斑微生态, 菌群功能活动

Abstract:

The ‘ecological plaque theory’ leads a new direction for deep understanding on the aetiology of dental caries. This theory supports that caries is mediated by microecological imbalance in dental plaque biofilm, which shifts towards acid-producing and acid-resistant environment due to various factors. The emergence of high-throughput microbial detection technology based on the 16S ribosomal RNA (rRNA) gene made it possible to comprehensively study dental plaque microecology in caries. The main difference in microflora between health and dental caries does not depend on the composition, including core microflora, but that acid-producing and acid-resistant bacteria were selected during the process of dental caries. Different individuals may have different compositions of microflora in dental caries. Dental caries is accompanied by a series of changes in the ecological structure and function in dental plaques. Such changes include decreased microbial diversity, increased homogeneity, enhanced synergy among species and changed metabolism. In this paper, current status and frontiers on research of plaque microecology in dental caries will be reviewed.

Key words: dental caries, microbial diversity, plaque microecology, functional activity of microflora

中图分类号: 

  • R781.1
[1] Global Burden of Disease Study Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013[J]. Lancet, 2015,386(9995):743-800.
pmid: 26063472
[2] Vos T, Flaxman AD, Naghavi M, et al. Years lived with disability (YLDs) for 1 160 sequelae of 289 diseases and injuries 1990-2010: a systematic ana-lysis for the Global Burden of Disease Study 2010[J]. Lancet, 2012,380(9859):2163-2196.
[3] 王兴. 第四次全国口腔健康流行病学调查报告[M]. 北京: 人民卫生出版社, 2018.
Wang X. Report of the fourth national oral health epidemiological survey[M]. Beijing: People’s Medi-cal Publishing House, 2018.
[4] Takahashi N, Nyvad B. Ecological hypojournal of dentin and root caries[J]. Caries Res, 2016,50(4):422-431.
doi: 10.1159/000447309 pmid: 27458979
[5] Burne RA, Zeng L, Ahn SJ, et al. Progress dissecting the oral microbiome in caries and health[J]. Adv Dent Res, 2012,24(2):77-80.
pmid: 22899685
[6] 樊明文. 牙体牙髓病学[M]. 4版. 北京: 人民卫生出版社, 2012: 38-40.
Fan MW. Operative dentistry and endodontics[M]. 4th ed. Beijing: People’s Medical Publishing House, 2012: 38-40.
[7] Alcaraz LD, Belda-Ferre P, Cabrera-Rubio R, et al. Identifying a healthy oral microbiome through meta-genomics[J]. Clin Microbiol Infect, 2012,18(Suppl 4):54-57.
[8] Xu P, Gunsolley J. Application of metagenomics in understanding oral health and disease[J]. Virulence, 2014,5(3):424-432.
doi: 10.4161/viru.28532
[9] Karpinski TM, Szkaradkiewicz AK. Microbiology of dental caries[J]. J Biol Earth Sci, 2013,3(1):M21-M24.
[10] Burczynska A, Dziewit L, Decewicz P, et al. App-lication of metagenomic analyses in dentistry as a novel strategy enabling complex insight into micro-bial diversity of the oral cavity[J]. Pol J Microbiol, 2017,66(1):9-15.
pmid: 29359689
[11] Aas JA, Griffen AL, Dardis SR, et al. Bacteria of dental caries in primary and permanent teeth in chil-dren and young adults[J]. J Clin Microbiol, 2008,46(4):1407-1417.
pmid: 18216213
[12] Rosier BT, De Jager M, Zaura E, et al. Historical and contemporary hypotheses on the development of oral diseases: are we there yet[J]. Front Cell Infect Mi-crobiol, 2014,4:92.
[13] Marsh PD. Are dental diseases examples of ecolo-gical catastrophes[J]. Microbiology (Reading, Engl), 2003,149(Pt 2):279-294.
doi: 10.1099/mic.0.26082-0
[14] Astorga B, Barraza C, Casals JM, et al. Avances en El estudio de la diversidad bacteriana oral asociada a caries dental mediante El estudio genómico[J]. Int J Odontostomat, 2015,9(3):349-356.
doi: 10.4067/S0718-381X2015000300002
[15] Jiang W, Zhang J, Chen H. Pyrosequencing analysis of oral microbiota in children with severe early child-hood dental caries[J]. Curr Microbiol, 2013,67(5):537-542.
doi: 10.1007/s00284-013-0393-7
[16] Wade WG. The oral microbiome in health and dis-ease[J]. Pharmacol Res, 2013,69(1):137-143.
pmid: 23201354
[17] Rosier BT, Marsh PD, Mira A. Resilience of the oral microbiota in health: mechanisms that prevent dys-biosis[J]. J Dent Res, 2018,97(4):371-380.
pmid: 29195050
[18] Kilian M, Chapple IL, Hannig M, et al. The oral microbiome—an update for oral healthcare profes-sionals[J]. Br Dent J, 2016,221(10):657-666.
doi: 10.1038/sj.bdj.2016.865 pmid: 27857087
[19] Duran-Pinedo AE, Frias-Lopez J. Beyond microbial community composition: functional activities of the oral microbiome in health and disease[J]. Microbes Infect, 2015,17(7):505-516.
doi: 10.1016/j.micinf.2015.03.014 pmid: 25862077
[20] Xu X, He JZ, Xue J, et al. Oral cavity contains distinct niches with dynamic microbial communities[J]. Environ Microbiol, 2015,17(3):699-710.
doi: 10.1111/1462-2920.12502 pmid: 24800728
[21] Al-Hebshi NN, Baraniya D, Chen T, et al. Metage-nome sequencing-based strain-level and functional characterization of supragingival microbiome as-sociated with dental caries in children[J]. J Oral Mic-robiol, 2019,11(1):1557986.
[22] Xu Y, Jia YH, Chen L, et al. Metagenomic analysis of oral microbiome in young children aged 6-8 years living in a rural isolated Chinese Province[J]. Oral Dis, 2018,24(6):1115-1125.
doi: 10.1111/odi.12871 pmid: 29667264
[23] ohansson I, Witkowska E, Kaveh B, et al. The micro-biome in populations with a low and high prevalence of caries[J]. J Dent Res, 2016,95(1):80-86.
pmid: 26442950
[24] 霍媛媛, 韩轩, 李雨庆, 等. 龋病相关微生物群落结构与功能的多组学研究进展[J]. 口腔疾病防治, 2018,26(3):195-199.
Huo YY, Han X, Li YQ , et al. A multiomics approach to study the associations between microbial com-munities and functions and dental caries[J]. J Dent Prev Treat, 2018,26(3):195-199.
[25] 石四箴. 儿童口腔医学[M]. 4版. 北京: 人民卫生出版社, 2011: 112-113.
Shi SJ. Pediatric stomatology[M]. 4th ed. Beijing: People’s Medical Publishing House, 2011: 112-113.
[26] Ling ZX, Kong JM, Jia P, et al. Analysis of oral microbiota in children with dental caries by PCR-DGGE and barcoded pyrosequencing[J]. Microb Ecol, 2010,60(3):677-690.
doi: 10.1007/s00248-010-9712-8 pmid: 20614117
[27] Teng F, Yang F, Huang S, et al. Prediction of early childhood caries via spatial-temporal variations of oral microbiota[J]. Cell Host Microbe, 2015,18(3):296-306.
doi: 10.1016/j.chom.2015.08.005 pmid: 26355216
[28] Ma C, Chen F, Zhang YF, et al. Comparison of oral microbial profiles between children with severe early childhood caries and caries-free children using the human oral microbe identification microarray[J]. PLoS One, 2015,10(3):e0122075.
doi: 10.1371/journal.pone.0122075 pmid: 25821962
[29] Tanner AC, Kent RL Jr, Holgerson PL, et al. Microbiota of severe early childhood caries before and after therapy[J]. J Dent Res, 2011,90(11):1298-1305.
doi: 10.1177/0022034511421201
[30] Xu H, Tian J, Hao WJ, et al. Oral microbiome shifts from caries-free to caries-affected status in 3-year-old Chinese children: a longitudinal study[J]. Front Microbiol, 2018,9:2009.
doi: 10.3389/fmicb.2018.02009 pmid: 30210479
[31] Dzidic M, Collado MC, Abrahamsson T, et al. Oral microbiome development during childhood: an eco-logical succession influenced by postnatal factors and associated with tooth decay[J]. ISME J, 2018,12(9):2292-2306.
doi: 10.1038/s41396-018-0204-z pmid: 29899505
[32] Li F, Tao DY, Feng XP, et al. Establishment and development of oral microflora in 12-24 month-old toddlers monitored by high-throughput sequencing[J]. Front Cell Infect Microbiol, 2018,8:422.
pmid: 30564560
[33] Luo AH, Yang DQ, Xin BC, et al. Microbial profiles in saliva from children with and without caries in mixed dentition[J]. Oral Dis, 2012,18(6):595-601.
doi: 10.1111/j.1601-0825.2012.01915.x
[34] Munson MA, Banerjee A, Watson TF, et al. Molecular analysis of the microflora associated with dental caries[J]. J Clin Microbiol, 2004,42(7):3023-3029.
doi: 10.1128/JCM.42.7.3023-3029.2004 pmid: 15243054
[35] Chhour KL, Nadkarni MA, Byun R, et al. Molecular analysis of microbial diversity in advanced caries[J]. J Clin Microbiol, 2005,43(2):843-849.
doi: 10.1128/JCM.43.2.843-849.2005 pmid: 15695690
[36] He JZ, Tu QC, Ge YC, et al. Taxonomic and func-tional analyses of the supragingival microbiome from caries-affected and caries-free hosts[J]. Microb Ecol, 2018,75(2):543-554.
doi: 10.1007/s00248-017-1056-1 pmid: 28932895
[37] Xiao CC, Ran SJ, Huang ZW, et al. Bacterial diversity and community structure of supragingival plaques in adults with dental health or caries revealed by 16S pyrosequencing[J]. Front Microbiol, 2016,7:1145.
doi: 10.3389/fmicb.2016.01145 pmid: 27499752
[38] Papaioannou W, Gizani S, Haffajee AD, et al. The microbiota on different oral surfaces in healthy chil-dren[J]. Oral Microbiol Immunol, 2009,24(3):183-189.
doi: 10.1111/omi.2009.24.issue-3
[39] Li Y, Ku CY, Xu J, et al. Survey of oral microbial diversity using PCR-based denaturing gradient gel electrophoresis[J]. J Dent Res, 2005,84(6):559-564.
doi: 10.1177/154405910508400614 pmid: 15914595
[40] Simón-Soro A, Belda-Ferre P, Cabrera-Rubio R, et al. A tissue-dependent hypojournal of dental caries[J]. Caries Res, 2013,47(6):591-600.
doi: 10.1159/000351663
[41] Gross EL, Beall CJ, Kutsch SR, et al. Beyond Strep-tococcus mutans: dental caries onset linked to multiple species by 16S rRNA community analysis[J]. PLoS One, 2012,7(10):e47722.
doi: 10.1371/journal.pone.0047722 pmid: 23091642
[42] Kianoush N, Adler CJ, Nguyen KA, et al. Bacterial profile of dentine caries and the impact of pH on bacterial population diversity[J]. PLoS One, 2014,9(3):e92940.
doi: 10.1371/journal.pone.0092940 pmid: 24675997
[43] Jiang Q, Liu J, Chen L, et al. The oral microbiome in the elderly with dental caries and health[J]. Front Cell Infect Microbiol, 2018,8:442.
doi: 10.3389/fcimb.2018.00442 pmid: 30662876
[44] Preza D, Olsen I, Aas JA, et al. Bacterial profiles of root caries in elderly patients[J]. J Clin Microbiol, 2008,46(6):2015-2021.
doi: 10.1128/JCM.02411-07 pmid: 18385433
[45] Chen L, Qin BC, Du MQ, et al. Extensive description and comparison of human supra-gingival microbiome in root caries and health[J]. PLoS One, 2015,10(2):e0117064.
doi: 10.1371/journal.pone.0117064 pmid: 25658087
[46] Tao Y, Zhou Y, Ouyang Y, et al. Dynamics of oral microbial community profiling during severe early childhood caries development monitored by PCR-DGGE[J]. Arch Oral Biol, 2013,58(9):1129-1138.
doi: 10.1016/j.archoralbio.2013.04.005 pmid: 23664249
[47] Gross EL, Leys EJ, Gasparovich SR, et al. Bacterial 16S sequence analysis of severe caries in young per-manent teeth[J]. J Clin Microbiol, 2010,48(11):4121-4128.
doi: 10.1128/JCM.01232-10 pmid: 20826648
[48] Jiang W, Ling ZX, Lin XL, et al. Pyrosequencing analysis of oral microbiota shifting in various caries states in childhood[J]. Microb Ecol, 2014,67(4):962-969.
doi: 10.1007/s00248-014-0372-y pmid: 24504329
[49] 陈婧, 程磊, 周学东, 等. 龋病微生物因素研究进展[J]. 华西口腔医学杂志, 2018,36(1):104-108.
Chen J, Cheng L, Zhou XD , et al. Recent achieve-ments in the microbiological etiology of dental caries[J]. West China J Stomatol, 2018,36(1):104-108.
[50] Tanner ACR, Kressirer CA, Rothmiller S, et al. The caries microbiome: implications for reversing dys-biosis[J]. Adv Dent Res, 2018,29(1):78-85.
doi: 10.1177/0022034517736496 pmid: 29355414
[51] Simón-Soro A, Mira A. Solving the etiology of dental caries[J]. Trends Microbiol, 2015,23(2):76-82.
pmid: 25435135
[52] Conrads G, About I. Pathophysiology of dental caries[J]. Monogr Oral Sci, 2018,27:1-10.
doi: 10.1159/000487826 pmid: 29794423
[53] Jorth P, Turner KH, Gumus P, et al. Metatranscriptomics of the human oral microbiome during health and disease[J]. MBio, 2014,5(2):e01012-e01014.
pmid: 24692635
[54] Xiao J, Klein MI, Falsetta ML, et al. The exopoly-saccharide matrix modulates the interaction between 3D architecture and virulence of a mixed-species oral biofilm[J]. PLoS Pathog, 2012,8(4):e1002623.
doi: 10.1371/journal.ppat.1002623 pmid: 22496649
[55] Reyes E, Martin J, Moncada G, et al. Caries-free subjects have high levels of urease and arginine deiminase activity[J]. J Appl Oral Sci, 2014,22(3):235-240.
doi: 10.1590/1678-775720130591 pmid: 25025565
[56] Burne RA. Getting to know “the known unknowns”: heterogeneity in the oral microbiome[J]. Adv Dent Res, 2018,29(1):66-70.
doi: 10.1177/0022034517735293 pmid: 29355408
[57] Kuramitsu HK, He XS, Lux R, et al. Interspecies interactions within oral microbial communities[J]. Microbiol Mol Biol Rev, 2007,71(4):653-670.
doi: 10.1128/MMBR.00024-07 pmid: 18063722
[58] Marsh PD. In sickness and in health-what does the oral microbiome mean to us? An ecological perspe-ctive[J]. Adv Dent Res, 2018,29(1):60-65.
doi: 10.1177/0022034517735295 pmid: 29355410
[59] Pitts NB, Zero DT, Marsh PD, et al. Dental caries[J]. Nat Rev Dis Primers, 2017,3:17030.
pmid: 28540937
[60] Murray JL, Connell JL, Stacy A, et al. Mechanisms of synergy in polymicrobial infections[J]. J Micro-biol, 2014,52(3):188-199.
[61] Peterson SN, Meissner T, Su AI, et al. Functional expression of dental plaque microbiota[J]. Front Cell Infect Microbiol, 2014,4:108.
doi: 10.3389/fcimb.2014.00108 pmid: 25177549
[62] Belda-Ferre P, Alcaraz LD, Cabrera-Rubio R, et al. The oral metagenome in health and disease[J]. ISME J, 2012,6(1):46-56.
doi: 10.1038/ismej.2011.85
[63] Takahashi N, Washio J, Mayanagi G. Metabolomics of supragingival plaque and oral bacteria[J]. J Dent Res, 2010,89(12):1383-1388.
doi: 10.1177/0022034510377792 pmid: 20924070
[64] Espinoza JL, Harkins DM, Torralba M, et al. Supra-gingival plaque microbiome ecology and functional potential in the context of health and disease[J]. MBio, 2018,9(6):e01631-e01618.
doi: 10.1128/mBio.01631-18 pmid: 30482830
[65] Ghadimi E, Eimar H, Marelli B, et al. Trace elements can influence the physical properties of tooth enamel[J]. Springerplus, 2013,2:499.
doi: 10.1186/2193-1801-2-499 pmid: 24133648
[66] He MY, Lu H, Luo CG, et al. Determining trace metal elements in the tooth enamel from Hui and Han Ethnic groups in China using microwave digestion and inductively coupled plasma mass spectrometry (ICP-MS)[J]. Microchem J, 2016,127:142-144.
doi: 10.1016/j.microc.2016.02.009
[67] 刘涛, 吕一品, 姚辰琛, 等. 口腔微生态的研究进展[J]. 生命科学研究, 2012,16(5):466-470.
Liu T, Lü YP, Yao CC , et al. Progresses on oral mi-croecology[J]. Life Sci Res, 2012,16(5):466-470.
[68] Samaranayake L, Matsubara VH. Normal oral flora and the oral ecosystem[J]. Dent Clin North Am, 2017,61(2):199-215.
doi: 10.1016/j.cden.2016.11.002 pmid: 28317562
[69] Bradshaw DJ, Marsh PD. Analysis of pH-driven disruption of oral microbial communities in vitro[J]. Caries Res, 1998,32(6):456-462.
pmid: 9745120
[70] He JZ, Li Y, Cao YP, et al. The oral microbiome diversity and its relation to human diseases[J]. Folia Microbiol (Praha), 2015,60(1):69-80.
doi: 10.1007/s12223-014-0342-2
[71] 马守治, 程辉, 闫福华. 口腔修复材料对细菌在其表面粘附和生长的影响[J]. 国外医学口腔医学分册, 2005,32(5):373-374.
Ma SZ, Cheng H, Yan FH . Effect of dental prosthetic materials on bacterial adhesion and growth on its surface[J]. Foreign Med Sci (Dent Med Branch), 2005,32(5):373-374.
[72] Oktyabrskii ON, Smirnova GV. Redox potential changes in bacterial cultures under stress conditions[J]. Microbiology, 2012,81(2):131-142.
doi: 10.1134/S0026261712020099
[1] 崔钰嘉,孙建勋,周学东. 黄连素的生物学功能及治疗口腔疾病研究的进展[J]. 国际口腔医学杂志, 2020, 47(1): 115-120.
[2] 陈艳艳,彭显,周学东,程磊. 定量光导荧光技术在龋病及牙周疾病诊治中的应用[J]. 国际口腔医学杂志, 2019, 46(6): 699-704.
[3] 青薇,黄丽娟,郑佳俊,任静,李成龙,庹嫱,任小华,牟雁东. 16S核糖体DNA高通量测序研究种植体龈沟液微生物的变化[J]. 国际口腔医学杂志, 2019, 46(5): 532-539.
[4] 王晓波,林世耀,李霞. 母亲与儿童龋病关系的研究进展[J]. 国际口腔医学杂志, 2019, 46(4): 469-474.
[5] 王静,王艳,王川东,黄睿洁,田燕,胡玮,邹静. 甘草及其提取物在防治口腔感染相关疾病中的应用[J]. 国际口腔医学杂志, 2018, 45(5): 546-552.
[6] 丁杰, 宋光泰. 微创技术在儿童龋病治疗中的应用[J]. 国际口腔医学杂志, 2018, 45(4): 473-479.
[7] 郑黎薇, 邹静, 夏斌, 刘英群, 黄洋, 赵今. 儿童乳磨牙金属预成冠的修复治疗[J]. 国际口腔医学杂志, 2017, 44(2): 125-129.
[8] 王玉霞,周学东,李明云. 韦荣球菌与龋病和链球菌间的关系[J]. 国际口腔医学杂志, 2017, 44(2): 195-199.
[9] 刘诗雨,何金枝,李明云. 白假丝酵母菌与龋病的相关性及其致龋机制[J]. 国际口腔医学杂志, 2017, 44(1): 103-107.
[10] 周双双 郑欣 周学东 徐欣. 菌斑生物膜产碱代谢与龋病[J]. 国际口腔医学杂志, 2016, 43(5): 573-577.
[11] 冯汝舟 刘娟 吕长海. 氟化物在儿童和青少年龋病防治中的应用[J]. 国际口腔医学杂志, 2016, 43(1): 118-.
[12] 郗红 周惠 闫秀娟 张宇娜 胡玮玮 黄洋. 纳米技术在龋病治疗中应用的研究进展[J]. 国际口腔医学杂志, 2014, 41(5): 563-566.
[13] 许鹏程 徐欣 周学东. 钙磷再矿化及其系统[J]. 国际口腔医学杂志, 2014, 41(3): 347-350.
[14] 李长娥 于丹妮. 光学相干层析技术及其在口腔疾病诊断中的应用[J]. 国际口腔医学杂志, 2014, 41(1): 68-71.
[15] 相艳 杜民权. 双歧杆菌及其与龋病的相关性研究进展[J]. 国际口腔医学杂志, 2013, 40(6): 820-822.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王昆润. 在种植体上制作固定义齿以后下颌骨密度的动态变化[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 王昆润. 二甲亚砜和双氯芬酸并用治疗根尖周炎[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 宋红. 青少年牙周炎外周血分叶核粒细胞的趋化功能[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 王昆润. 后牙冠根斜形牙折的治疗[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 温秀杰. 氟化物对牙本质脱矿抑制作用的体外实验研究[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 房兵. 唇腭裂新生儿前颌骨矫正方法及对上颌骨生长发育的影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[7] 王金涛 刘美娟 孙宏晨 欧阳喈. 牙槽嵴牵张成骨[J]. 国际口腔医学杂志, 2004, 31(02): 146 -148 .
[8] 孟姝,吴亚菲,杨禾. 伴放线放线杆菌产生的细胞致死膨胀毒素及其与牙周病的关系[J]. 国际口腔医学杂志, 2005, 32(06): 458 -460 .
[9] 轩东英,张建波 金岩. 胚胎发育期TGF-β超家族成员与腭裂发生的关系[J]. 国际口腔医学杂志, 2004, 31(02): 132 -134 .
[10] 张婷,莫安春. 暂时冠桥修复材料的研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .