国际口腔医学杂志 ›› 2019, Vol. 46 ›› Issue (3): 320-325.doi: 10.7518/gjkq.2019030

• 综述 • 上一篇    下一篇

特异性AT序列结合蛋白2在颌面部发育及牙周组织再生中作用的研究进展

贾婷婷,颜世果()   

  1. 山东大学口腔医院牙周科,山东省口腔组织再生重点实验室 济南 250012
  • 收稿日期:2018-10-19 修回日期:2019-01-03 出版日期:2019-05-01 发布日期:2019-06-05
  • 通讯作者: 颜世果
  • 作者简介:贾婷婷,硕士,Email:jtt0530@126.com
  • 基金资助:
    国家自然科学基金(81200790);山东重点研究开发计划(公益类)(2017GSF218063);山东省自然科学基金(ZR2012HQ028)

Research progress on the role of special AT-rich sequence binding protein 2 in maxillofacial development and perio-dontal regeneration

Tingting Jia,Shiguo Yan()   

  1. Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan 250012, China
  • Received:2018-10-19 Revised:2019-01-03 Online:2019-05-01 Published:2019-06-05
  • Contact: Shiguo Yan
  • Supported by:
    This study was supported by National Natural Science Foundation of China(81200790);Key Research and Development Plan (Public Welfare Category) of Shandong(2017GSF218063);Natural Science Foundation of Shandong Province(ZR2012HQ028)

摘要:

特异性AT序列结合蛋白(SATB)2是一种组织特异性表达的核基质序列结合蛋白。SATB2被鉴定为骨骼塑型和成骨细胞分化的分子决定因素,在颌面部发育中发挥关键作用,是有效的促进牙周再生的调控因子。本文就SATB2对颌面部发育的调控及其在牙周组织工程领域应用的研究现状进行综述。

关键词: 特异性AT序列结合蛋白2, 颌面部发育, 牙周组织再生

Abstract:

Special AT-rich sequence binding protein 2 (SATB2) is a tissue-specific nuclear matrix sequence binding protein. SATB2 has been identified as a molecular determinant of osteogenesis and osteoblast differentiation, plays a key role in maxillofacial development and is an effective regulator of periodontal regeneration. This article reviews the current status of regulation of maxillofacial development by SATB2 and its application in periodontal tissue engineering.

Key words: special AT-rich sequence binding protein 2, maxillofacial development, periodontal tissue regeneration

中图分类号: 

  • Q813
[1] Bode J, Benham C, Knopp A , et al. Transcriptional augmentation: modulation of gene expression by scaffold/matrix-attached regions (S/MAR elements)[J]. Crit Rev Eukaryot Gene Expr, 2000,10(1):73-90.
[2] Dobreva G, Dambacher J, Grosschedl R . SUMO modification of a novel MAR-binding protein, SATB2, modulates immunoglobulin mu gene expression[J]. Genes Dev, 2003,17(24):3048-3061.
doi: 10.1101/gad.1153003
[3] FitzPatrick DR, Carr IM, McLaren L , et al. Identification of SATB2 as the cleft palate gene on 2q32-q33[J]. Hum Mol Genet, 2003,12(19):2491-2501.
doi: 10.1093/hmg/ddg248
[4] Szemes M, Gyorgy A, Paweletz C , et al. Isolation and characterization of SATB2, a novel AT-rich DNA binding protein expressed in development- and cell-specific manner in the rat brain[J]. Neurochem Res, 2006,31(2):237-246.
doi: 10.1007/s11064-005-9012-8
[5] Dobreva G, Chahrour M, Dautzenberg M , et al. SATB2 is a multifunctional determinant of craniofacial patterning and osteoblast differentiation[J]. Cell, 2006,125(5):971-986.
doi: 10.1016/j.cell.2006.05.012
[6] Brocato J, Costa M . SATB1 and 2 in colorectal cancer[J]. Carcinogenesis, 2015,36(2):186-191.
doi: 10.1093/carcin/bgu322
[7] Leone DP, Heavner WE, Ferenczi EA , et al. Satb2 regulates the differentiation of both callosal and subcerebral projection neurons in the developing cerebral cortex[J]. Cereb Cortex, 2015,25(10):3406-3419.
doi: 10.1093/cercor/bhu156
[8] Yokota T, Kanakura Y . Role of tissue-specific AT-rich DNA sequence-binding proteins in lymphocyte differentiation[J]. Int J Hematol, 2014,100(3):238-245.
doi: 10.1007/s12185-014-1602-2
[9] Zarate YA, Perry H, Ben-Omran T , et al. Further supporting evidence for the SATB2-associated syndrome found through whole exome sequencing[J]. Am J Med Genet A, 2015,167A(5):1026-1032.
[10] Döcker D, Schubach M, Menzel M , et al. Further delineation of the SATB2 phenotype[J]. Eur J Hum Genet, 2014,22(8):1034-1039.
doi: 10.1038/ejhg.2013.280
[11] Zarate YA, Fish JL . SATB2-associated syndrome: mechanisms, phenotype, and practical recommendations[J]. Am J Med Genet A, 2017,173(2):327-337.
doi: 10.1002/ajmg.a.38022
[12] Britanova O, Depew MJ, Schwark M , et al. Satb2 haploinsufficiency phenocopies 2q32-q33 deletions, whereas loss suggests a fundamental role in the coordination of jaw development[J]. Am J Hum Genet, 2006,79(4):668-678.
doi: 10.1086/508214
[13] Zhang J, Tu Q, Grosschedl R , et al. Roles of SATB2 in osteogenic differentiation and bone regeneration[J]. Tissue Eng Part A, 2011,17(13/14):1767-1776.
doi: 10.1089/ten.tea.2010.0503
[14] Tu Q, Zhang J, James L , et al. Cbfa1/Runx2-deficiency delays bone wound healing and locally delivered Cbfa1/Runx2 promotes bone repair in animal models[J]. Wound Repair Regen, 2007,15(3):404-412.
doi: 10.1111/wrr.2007.15.issue-3
[15] He L, Liu H, Shi L , et al. Expression and localization of special AT-rich sequence binding protein 2 in murine molar development and the pulp-dentin complex of human healthy teeth and teeth with pulpitis[J]. Exp Ther Med, 2017,14(4):3507-3512.
doi: 10.3892/etm.2017.4980
[16] Ge J, Guo S, Fu Y , et al. Dental follicle cells participate in tooth eruption via the RUNX2-MiR-31-SATB2 loop[J]. J Dent Res, 2015,94(7):936-944.
doi: 10.1177/0022034515578908
[17] Phan M, Conte F, Khandelwal KD , et al. Tooth agenesis and orofacial clefting: genetic brothers in arms[J] Hum Genet, 2016,135(12):1299-1327.
doi: 10.1007/s00439-016-1733-z
[18] Fish JL . Developmental mechanisms underlying variation in craniofacial disease and evolution[J]. Dev Biol, 2016,415(2):188-197.
doi: 10.1016/j.ydbio.2015.12.019
[19] Rainger JK, Bhatia S, Bengani H , et al. Disruption of SATB2 or its long-range cis-regulation by SOX9 causes a syndromic form of Pierre Robin sequence[J]. Hum Mol Genet, 2014,23(10):2569-2579.
doi: 10.1093/hmg/ddt647
[20] Bonilla-Claudio M, Wang J, Bai Y , et al. Bmp signaling regulates a dose-dependent transcriptional program to control facial skeletal development[J]. Development, 2012,139(4):709-719.
doi: 10.1242/dev.073197
[21] Sheehan-Rooney K, Swartz ME, Lovely CB , et al. Bmp and Shh signaling mediate the expression of satb2 in the pharyngeal arches[J]. PLoS One, 2013,8(3):e59533.
doi: 10.1371/journal.pone.0059533
[22] Nazarali A, Puthucode R, Leung V , et al. Temporal and spatial expression of Hoxa-2 during murine palatogenesis[J]. Cell Mol Neurobiol, 2000,20(3):269-290.
doi: 10.1023/A:1007006024407
[23] Mao XY, Tang SJ . Effects of phenytoin on Satb2 and Hoxa2 gene expressions in mouse embryonic craniofacial tissue[J]. Biochem Cell Biol, 2010,88(4):731-735.
doi: 10.1139/O10-013
[24] Yang G, Li X, Yuan G , et al. The effects of osterix on the proliferation and odontoblastic differentiation of human dental papilla cells[J]. J Endod, 2014,40(11):1771-1777.
doi: 10.1016/j.joen.2014.04.012
[25] Yang X, Matsuda K, Bialek P , et al. ATF4 is a substrate of RSK2 and an essential regulator of osteoblast biology; implication for Coffin-Lowry syndrome[J]. Cell, 2004,117(3):387-398.
doi: 10.1016/S0092-8674(04)00344-7
[26] Hassan MQ, Gordon JA, Beloti MM , et al. A network connecting Runx2, SATB2, and the miR-23a-27a- 24-2 cluster regulates the osteoblast differentiation program[J]. Proc Natl Acad Sci USA, 2010,107(46):19879-19884.
doi: 10.1073/pnas.1007698107
[27] Deng Y, Wu S, Zhou H , et al. Effects of a miR-31, Runx2, and Satb2 regulatory loop on the osteogenic differentiation of bone mesenchymal stem cells[J]. Stem Cells Dev, 2013,22(16):2278-2286.
doi: 10.1089/scd.2012.0686
[28] Wei J, Shi Y, Zheng L , et al. miR-34s inhibit osteoblast proliferation and differentiation in the mouse by targeting SATB2[J]. J Cell Biol, 2012,197(4):509-521.
doi: 10.1083/jcb.201201057
[29] Zhen L, Jiang X, Chen Y , et al. MiR-31 is involved in the high glucose-suppressed osteogenic differentiation of human periodontal ligament stem cells by targeting Satb2[J]. Am J Transl Res, 2017,9(5):2384-2393.
[30] Hu N, Feng C, Jiang Y , et al. Regulative effect of Mir-205 on osteogenic differentiation of bone mesenchymal stem cells (BMSCs): possible role of SATB2/Runx2 and ERK/MAPK pathway[J]. Int J Mol Sci, 2015,16(5):10491-10506.
doi: 10.3390/ijms160510491
[31] Tang W, Li Y, Osimiri L , et al. Osteoblast-specific transcription factor Osterix (Osx) is an upstream regulator of Satb2 during bone formation[J]. J Biol Chem, 2011,286(38):32995-33002.
doi: 10.1074/jbc.M111.244236
[32] Zuo C, Zhao X, Shi Y , et al. TNF-α inhibits SATB2 expression and osteoblast differentiation through NF-κB and MAPK pathways[J]. Oncotarget, 2017,9(4):4833-4850.
[33] Freude T, Braun KF, Haug A , et al. Hyperinsulinemia reduces osteoblast activity in vitro via upregulation of TGF-β[J]. J Mol Med (Berl), 2012,90(11):1257-1266.
doi: 10.1007/s00109-012-0948-2
[34] Dong W, Zhang P, Fu Y , et al. Roles of SATB2 in site-specific stemness, autophagy and senescence of bone marrow mesenchymal stem cells[J]. J Cell Physiol, 2015,230(3):680-690.
doi: 10.1002/jcp.24792
[35] Zhou P, Wu G, Zhang P , et al. SATB2-Nanog axis links age-related intrinsic changes of mesenchymal stem cells from craniofacial bone[J]. Aging (Albany NY), 2016,8(9):2006-2011.
[36] Wu G, Xu R, Zhang P , et al. Estrogen regulates stemness and senescence of bone marrow stromal cells to prevent osteoporosis via ERβ-SATB2 pathway[J]. J Cell Physiol, 2018,233(5):4194-4204.
doi: 10.1002/jcp.v233.5
[37] Gong Y, Qian Y, Yang F , et al. Lentiviral-mediated expression of SATB2 promotes osteogenic differentiation of bone marrow stromal cells in vitro and in vivo[J]. Eur J Oral Sci, 2014,122(3):190-197.
doi: 10.1111/eos.12122
[38] Yan SG, Zhang J, Tu Q , et al. Transcription factor and bone marrow stromal cells in osseointegration of dental implants[J]. Eur Cell Mater, 2013,26:263-271.
doi: 10.22203/eCM
[39] Yan SG, Zhang J, Tu QS , et al. Enhanced osseointegration of titanium implant through the local delivery of transcription factor SATB2[J]. Biomaterials, 2011,32(33):8676-8683.
doi: 10.1016/j.biomaterials.2011.07.072
[40] Hsiong SX, Mooney DJ . Regeneration of vascularized bone[J]. Periodontol 2000, 2006,41(1):109-122.
doi: 10.1111/prd.2006.41.issue-1
[41] Prabha RD, Kraft DCE, Harkness L , et al. Bioactive nano-fibrous scaffold for vascularized craniofacial bone regeneration[J]. J Tissue Eng Regen Med, 2018,12(3):e1537-e1548.
doi: 10.1002/term.v12.3
[1] 范琳,孙江. 微针在口腔医学中的应用[J]. 国际口腔医学杂志, 2023, 50(4): 472-478.
[2] 董正谋,刘锐,刘鲁川,温秀杰. 种子细胞在牙周组织再生治疗中的研究进展[J]. 国际口腔医学杂志, 2019, 46(1): 48-54.
[3] 姜雨汐, 刘树泰. 牙周韧带细胞膜片技术用于牙周组织再生的研究进展[J]. 国际口腔医学杂志, 2017, 44(2): 204-208.
[4] 李昕怡,董伟. 釉基质蛋白促进牙周组织再生的研究进展[J]. 国际口腔医学杂志, 2015, 42(5): 600-605.
[5] 鲁少文 税艳青. 牙周膜干细胞的研究进展[J]. 国际口腔医学杂志, 2013, 40(6): 769-772.
[6] 张静 李纾. 控释技术在牙周组织再生治疗中的应用[J]. 国际口腔医学杂志, 2013, 40(5): 616-618.
[7] 项陈洋1综述 张凌琳2,3 李伟2审校. 釉基质蛋白在口腔医学领域中的应用进展[J]. 国际口腔医学杂志, 2012, 39(6): 766-769.
[8] 王姹综述 徐燕审校. 生长因子在牙周组织再生中的有效释放方式[J]. 国际口腔医学杂志, 2012, 39(2): 265-268.
[9] 唐焜琪综述 闫福华审校. 骨保护蛋白在牙周组织再生中的应用[J]. 国际口腔医学杂志, 2011, 38(5): 546-549.
[10] 李灵综述 石冰审校. 微小RNA-140 及其与颌面部发育[J]. 国际口腔医学杂志, 2011, 38(4): 419-422.
[11] 孙静综述 李纾审校. 牙周膜干细胞巢与牙周组织再生[J]. 国际口腔医学杂志, 2011, 38(4): 460-462.
[12] 孔宁静1综述刘建国1 李厚轩2 闫福华2审校. 脂多糖对牙周膜细胞生物学性状的影响[J]. 国际口腔医学杂志, 2011, 38(3): 370-372.
[13] 黄晶1 宋爱梅1,2综述 杨丕山1,2审校. 细胞层片移植的研究现状[J]. 国际口腔医学杂志, 2011, 38(2): 221-224.
[14] 陈芳综述 徐燕审校. 牙周膜干细胞的研究进展[J]. 国际口腔医学杂志, 2008, 35(6): 672-672~674.
[15] 丁佩惠,陈莉丽,. 基因治疗在牙周组织再生中的应用[J]. 国际口腔医学杂志, 2007, 34(02): 97-99.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张京剧. 青年期至中年期颅面复合体变化的头影测量研究[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 刘玲. 镍铬合金中铍对可铸造性和陶瓷金属结合力的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 王昆润. 在种植体上制作固定义齿以后下颌骨密度的动态变化[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 王昆润. 重型颌面部炎症死亡和康复病例的实验室检查指标比较[J]. 国际口腔医学杂志, 1999, 26(06): .
[5] 逄键梁. 两例外胚层发育不良儿童骨内植入种植体后牙槽骨生长情况[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 温秀杰. 氟化物对牙本质脱矿抑制作用的体外实验研究[J]. 国际口腔医学杂志, 1999, 26(05): .
[7] 杨春惠. 耳颞神经在颞颌关节周围的分布[J]. 国际口腔医学杂志, 1999, 26(04): .
[8] 王昆润. 牙周炎加重期应选用何种抗生素[J]. 国际口腔医学杂志, 1999, 26(04): .
[9] 杨儒壮 孙宏晨 欧阳喈. 纳米级高分子支架材料在组织工程中的研究进展[J]. 国际口腔医学杂志, 2004, 31(02): 126 -128 .
[10] 严超然,李龙江. 肿瘤靶向药物载体系统的研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .