Int J Stomatol ›› 2026, Vol. 53 ›› Issue (2): 189-196.doi: 10.7518/gjkq.2026211
• Original Articles • Previous Articles Next Articles
Ming Liu(
),Yanting Zhou,Jing Li(
)
CLC Number:
| [1] | Wu K, Sun Q, Liu D, et al. Alternative splicing landscape of head and neck squamous cell carcinoma[J]. Technol Cancer Res Treat, 2024, 23: 153303382412-72051. |
| [2] | Jiménez-Labaig P, Rullan A, Braña I, et al. Intratumoral therapies in head and neck squamous cell carcinoma: a systematic review and future perspectives[J]. Cancer Treat Rev, 2024, 127: 102746. |
| [3] | Afshari K, Sohal KS. Potential alternative therapeutic modalities for management head and neck squamous cell carcinoma: a review[J]. Cancer Control, 2023, 30: 10732748231185003. |
| [4] | Ruffin AT, Li H, Vujanovic L, et al. Improving head and neck cancer therapies by immunomodulation of the tumour microenvironment[J]. Nat Rev Cancer, 2023, 23(3): 173-188. |
| [5] | Gong Y, Bao L, Xu T, et al. The tumor ecosystem in head and neck squamous cell carcinoma and advan-ces in ecotherapy[J]. Mol Cancer, 2023, 22(1): 68. |
| [6] | Liu JC, Bhayani M, Kuchta K, et al. Patterns of distant metastasis in head and neck cancer at presentation: implications for initial evaluation[J]. Oral Oncol, 2019, 88: 131-136. |
| [7] | 张闳博, 韩伟. 头颈部鳞状细胞癌中蛋白质翻译后修饰的研究进展[J] . 中华口腔医学杂志, 2020, 55(10): 789-793. |
| Zhang HB, Han W. Research progress in protein post-translational modification in head and neck squamous cell carcinoma[J]. Chin J Stomatol, 2020, 55(10): 789-793. | |
| [8] | Li W, Li F, Zhang X, et al. Insights into the post-translational modification and its emerging role in shaping the tumor microenvironment[J]. Signal Transduct Target Ther, 2021, 6(1): 422. |
| [9] | Bilbrough T, Piemontese E, Seitz O. Dissecting the role of protein phosphorylation: a chemical biology toolbox[J]. Chem Soc Rev, 2022, 51(13): 5691-5730. |
| [10] | Geffen Y, Anand S, Akiyama Y, et al. Pan-cancer analysis of post-translational modifications reveals shared patterns of protein regulation[J]. Cell, 2023, 186(18): 3945-3967.e26. |
| [11] | Eichler J. Protein glycosylation[J]. Curr Biol, 2019, 29(7): R229-R231. |
| [12] | Yuan H, Wu X, Wu Q, et al. Lysine catabolism reprograms tumour immunity through histone crotonylation[J]. Nature, 2023, 617(7962): 818-826. |
| [13] | Zhang D, Tang Z, Huang H, et al. Metabolic regulation of gene expression by histone lactylation[J]. Nature, 2019, 574(7779): 575-580. |
| [14] | Schjoldager KT, Narimatsu Y, Joshi HJ, et al. Glo-bal view of human protein glycosylation pathways and functions[J]. Nat Rev Mol Cell Biol, 2020, 21(12): 729-749. |
| [15] | Lin MC, Huang MJ, Liu CH, et al. GALNT2 enhances migration and invasion of oral squamous cell carcinoma by regulating EGFR glycosylation and activity[J]. Oral Oncol, 2014, 50(5): 478-484. |
| [16] | Zhang J, Jiang S, Gu D, et al. Identification of novel molecular subtypes and a signature to predict prognosis and therapeutic response based on cuproptosis-related genes in prostate cancer[J]. Front Oncol, 2023, 13: 1162653. |
| [17] | Baba H, Kanda M, Sato Y, et al. Expression and malignant potential of B4GALNT4 in esophageal squamous cell carcinoma[J]. Ann Surg Oncol, 2020, 27(9): 3247-3256. |
| [18] | Bugshan A, Farooq I. Oral squamous cell carcinoma: metastasis, potentially associated malignant disorders, etiology and recent advancements in diagnosis[J]. F1000Res, 2020, 9: 229. |
| [19] | Chen L, Liu S, Tao Y. Regulating tumor suppressor genes: post-translational modifications[J]. Signal Transduct Target Ther, 2020, 5(1): 90. |
| [20] | Carnielli CM, Melo de Lima Morais T, Malta de Sá Patroni F, et al. Comprehensive glycoprofiling of oral tumors associates N-glycosylation with lymph node metastasis and patient survival[J]. Mol Cell Proteomics, 2023, 22(7): 100586. |
| [21] | Chen JT, Chen CH, Ku KL, et al. Glycoprotein B7-H3 overexpression and aberrant glycosylation in oral cancer and immune response[J]. Proc Natl Acad Sci U S A, 2015, 112(42): 13057-13062. |
| [22] | Chen YT, Chong YM, Cheng CW, et al. Identification of novel tumor markers for oral squamous cell carcinoma using glycoproteomic analysis[J]. Clin Chim Acta, 2013, 420: 45-53. |
| [23] | Vajaria BN, Patel KA, Patel PS. Role of aberrant glycosylation enzymes in oral cancer progression[J]. J Carcinog, 2018, 17: 5. |
| [24] | Chiang WF, Cheng TM, Chang CC, et al. Carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) promotes EGF receptor signaling of oral squamous cell carcinoma metastasis via the complex N-glycosylation[J]. Oncogene, 2018, 37(1): 116-127. |
| [25] | Sinevici N, Mittermayr S, Davey GP, et al. Salivary N-glycosylation as a biomarker of oral cancer: a pilot study[J]. Glycobiology, 2019, 29(10): 726-734. |
| [26] | Guu SY, Lin TH, Chang SC, et al. Serum N-glycome characterization and anti-carbohydrate antibody profiling in oral squamous cell carcinoma patients[J]. PLoS One, 2017, 12(6): e0178927. |
| [27] | Hirano K, Matsuda A, Kuji R, et al. Enhanced expression of the β4-N-acetylgalactosaminyltransfe-rase 4 gene impairs tumor growth of human breast cancer cells[J]. Biochem Biophys Res Commun, 2015, 461(1): 80-85. |
| [28] | Gill DJ, Tham KM, Chia J, et al. Initiation of GalNAc-type O-glycosylation in the endoplasmic reti-culum promotes cancer cell invasiveness[J]. Proc Natl Acad Sci U S A, 2013, 110(34): E3152-E3161. |
| [29] | Wu YM, Liu CH, Hu RH, et al. Mucin glycosyla-ting enzyme GALNT2 regulates the malignant cha-racter of hepatocellular carcinoma by modifying the EGF receptor[J]. Cancer Res, 2011, 71(23): 7270-7279. |
|
||