Int J Stomatol ›› 2025, Vol. 52 ›› Issue (1): 133-140.doi: 10.7518/gjkq.2025012

• Reviews • Previous Articles    

Research progress on the fabrication of polymer-infiltrated-ceramic-network composite for dental restorations

Yuxin Hu1(),Guangchao Lü1,Xiao Ma1,Shanshan Cao1,Qiulan Li2,Ke Zhao2,Xinping Zhang1()   

  1. 1.Dept. of Metallic Materials Science and Engineering, School of Materials Science & Engineering, South China University of Technology, Guangzhou 510640, China
    2.Dept. of Prosthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University & Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
  • Received:2024-06-11 Revised:2024-09-14 Online:2025-01-01 Published:2025-01-11
  • Contact: Xinping Zhang E-mail:mshuyuxin@mail.scut.edu.cn;mexzhang@scut.edu.cn
  • Supported by:
    2022 National Key Research and Development Program of China(2022YFC2410100)

Abstract:

Polymer-infiltrated-ceramic-network (PICN) composite is a new type of dental restorative material with an interpenetrating network of resin and ceramic phases. It has excellent natural tooth biomimetic properties and good machinability, making it suitable for rapid tooth repair and restoration through chairside computer-aided design/manufactu-ring. Thus, PICN composite has become a hotspot of research and application. Their comprehensive properties (including mechanical and aesthetic properties) can be controlled through appropriate component design, optimized preparation, and surface modification. This work performs a comprehensive review of the research progress on the fabrication of PICN composites, focusing on the state-of-the-art fabrication of porous ceramics, resin infiltration, and curing and providing a fresh perspective on the future development and research emphasis in this field.

Key words: dental material, polymer-infiltrated-ceramic-network, fabrication, mechanical property, aesthetic pro-perty

CLC Number: 

  • R783.1

TrendMD: 

Tab 1

Comparison of mechanical properties of natural teeth and PICN materials"

材料弯曲强度/MPa弹性模量/GPa维氏硬度/GPa断裂韧性/(MPa·m1/2
牙本质213~28016.00~20.300.6~0.92.20~3.10
釉质60~9048.00~105.503.0~5.30.60~1.50
PICN124~16027.26~37.951.7~2.51.09~1.50

Tab 2

Comparison of different methods used in pre-paration of porous ceramics"

方法复杂性孔隙率孔隙分布可控性
部分烧结法简单较低均匀
添加造孔剂法简单较低不均匀
颗粒堆积法简单不均匀
冷冻干燥法复杂均匀
3D打印法简单均匀
1 Elfakhri F, Alkahtani R, Li CC, et al. Influence of filler characteristics on the performance of dental composites: a comprehensive review[J]. Ceram Int, 2022, 48(19): 27280-27294.
2 Nguyen JF, Ruse D, Phan AC, et al. High-temperature-pressure polymerized resin-infiltrated ceramic networks[J]. J Dent Res, 2014, 93(1): 62-67.
3 Coldea A, Swain MV, Thiel N. Mechanical properties of polymer-infiltrated-ceramic-network mate- rials[J]. Dent Mater, 2013, 29(4): 419-426.
4 Petrini M, Ferrante M, Su B. Fabrication and characterization of biomimetic ceramic/polymer compo-site materials for dental restoration[J]. Dent Mater, 2013, 29(4): 375-381.
5 Algharaibeh S, Wan HB, Al-Fodeh R, et al. Fabrication and mechanical properties of biomimetic nacre-like ceramic/polymer composites for chairside CAD/CAM dental restorations[J]. Dent Mater, 2022, 38(1): 121-132.
6 Sodergren B, Wang J, Zhang Y, et al. Fracture resistance of ceramic-polymer hybrid materials using microscopic finite element analysis and experimental validation[J]. Comput Methods Biomech Biomed Engin, 2022, 25(16): 1785-1795.
7 He LH, Purton D, Swain M. A novel polymer infiltrated ceramic for dental simulation[J]. J Mater Sci Mater Med, 2011, 22(7): 1639-1643.
8 He LH, Swain M. A novel polymer infiltrated ceramic dental material[J]. Dent Mater, 2011, 27(6): 527-534.
9 Kang LZ, Zhou Y, Lan JL, et al. Effect of resin composition on performance of polymer-infiltrated feldspar-network composites for dental restoration[J]. Dent Mater J, 2020, 39(5): 900-908.
10 Ioannidis A, Gil A, Hämmerle CH, et al. Effect of thermomechanical loading on the cementation interface of implant-supported CAD/CAM crowns luted to titanium abutments[J]. Int J Prosthodont, 2020, 33(6): 656-662.
11 Ruiz-López J, Espinar C, Lucena C, et al. Effect of thickness on color and translucency of a multi-color polymer-infiltrated ceramic-network material[J]. J Esthet Restor Dent, 2023, 35(2): 381-389.
12 Dentistry-ceramic materials: [S/OL]. [2015-06-01]. .
13 Yano HT, Ikeda H, Nagamatsu Y, et al. Correlation between microstructure of CAD/CAM composites and the silanization effect on adhesive bonding[J]. J Mech Behav Biomed Mater, 2020, 101: 103441.
14 Ikeda H, Kawajiri Y, Sodeyama MK, et al. A SiO2/pHEMA-based polymer-infiltrated ceramic network composite for dental restorative materials[J]. J Compos Sci, 2022, 6(1): 17.
15 Cui BC, Zhang RR, Sun FB, et al. Mechanical and biocompatible properties of polymer-infiltrated-ceramic-network materials for dental restoration[J]. J Adv Ceram, 2020, 9(1): 123-128.
16 Cui BC, Li J, Wang HN, et al. Mechanical properties of polymer-infiltrated-ceramic (sodium aluminum silicate) composites for dental restoration[J]. J Dent, 2017, 62: 91-97.
17 Kul E, Matori KA, Karadeniz S, et al. Mechanical properties of polymer-infiltrated fluorapatite glass ceramics fabricated from clam shell and soda lime silicate glass[J]. Mater Plast, 2023, 60(1): 128-136.
18 Swain MV, Coldea A, Bilkhair A, et al. Interpenetrating network ceramic-resin composite dental restorative materials[J]. Dent Mater, 2016, 32(1): 34-42.
19 Wang YH, Luo SH, Dou YX, et al. Preparation and mechanical properties of polymer infiltrated feldspar ceramic for dental restoration materials[J]. J Polym Res, 2022, 29(11): 464.
20 Wang HN, Cui BC, Li J, et al. Mechanical properties and biocompatibility of polymer infiltrated so-dium aluminum silicate restorative composites[J]. J Adv Ceram, 2017, 6(1): 73-79.
21 Li WY, Sun J. Effects of ceramic density and sinte-ring temperature on the mechanical properties of a novel polymer-infiltrated ceramic-network zirconia dental restorative (filling) material[J]. Med Sci Mo-nit, 2018, 24: 3068-3076.
22 Biggemann J, Hoffmann P, Hristov I, et al. Injection molding of 3-3 hydroxyapatite composites[J]. Materials, 2020, 13(8): 1907.
23 Eldafrawy M, Nguyen JF, Mainjot AK, et al. A functionally graded PICN material for biomimetic CAD-CAM blocks[J]. J Dent Res, 2018, 97(12): 1324-1330.
24 Sodeyama MK, Ikeda H, Nagamatsu Y, et al. Printa-ble PICN composite mechanically compatible with human teeth[J]. J Dent Res, 2021, 100(13): 1475-1481.
25 Hodásová Ľ, Alemán C, Del Valle LJ, et al. 3D-printed polymer-infiltrated ceramic network with biocompatible adhesive to potentiate dental implant applications[J]. Materials (Basel), 2021, 14(19): 5513.
26 Zhang F, Yang F, Lin D, et al. Parameter study of three-dimensional printing graphene oxide based on directional freezing[J]. J Manuf Sci Eng, 2017, 139(3): 031016.
27 Oh WS, Shen C, Alegre B, et al. Wetting characteristic of ceramic to water and adhesive resin[J]. J Prosthet Dent, 2002, 88(6): 616-621.
28 赵铱民. 口腔修复学[M]. 8版. 北京: 人民卫生出版社, 2020: 64-65.
Zhao YM. Prosthodontics[M]. 8th ed. Beijing: People’s Medical Publishing House, 2020: 64-65.
29 Eldafrawy M, Greimers L, Bekaert S, et al. Silane influence on bonding to CAD-CAM composites: an interfacial fracture toughness study[J]. Dent Mater, 2019, 35(9): 1279-1290.
30 Steier V, Koplin C, Kailer A, et al. Investigation of the adhesion promoter distribution in porous ceramic precursors[J]. ISRN Mech Eng, 2011, 2011: 304129.
31 Kawajiri Y, Ikeda H, Nagamatsu Y, et al. PICN nanocomposite as dental CAD/CAM block comparable to human tooth in terms of hardness and fle-xural modulus[J]. Materials, 2021, 14(5): 1182.
32 de Almeida CM, Piva E, Duarte CG, et al. Physico-mechanical characterization and fracture reliability of dental resin composites for enamel restoration[J]. J Braz Soc Mech Sci Eng, 2019, 41(10): 398.
33 Grazioli G, Cuevas-Suarez CE, Mederos M, et al. Evaluation of irradiance and radiant exposure on the polymerization and mechanical properties of a resin composite[J]. Braz Oral Res, 2022, 36: e082.
34 Kim D, Shim JS, Lee DS, et al. Effects of post-cu-ring time on the mechanical and color properties of three-dimensional printed crown and bridge mate-rials[J]. Polymers, 2020, 12(11): 2762.
35 Li WD, Wang K, Wang ZZ, et al. Optimal resin monomer ratios for light-cured dental resins[J]. Heliyon, 2022, 8(9): e10554.
36 Schneider TR, Hakami-Tafreshi R, Tomasino-Perez A, et al. Effects of dental composite resin monomers on dental pulp cells[J]. Dent Mater J, 2019, 38(4): 579-583.
37 Barutcigil K, Dündar A, Batmaz SG, et al. Do resin-based composite CAD/CAM blocks release monomers[J]. Clin Oral Investig, 2021, 25(1): 329-336.
38 Lopes-Rocha L, Ribeiro-Gonçalves L, Henriques B, et al. An integrative review on the toxicity of Bisphenol A (BPA) released from resin composites used in dentistry[J]. J Biomed Mater Res B Appl Biomater, 2021, 109(11): 1942-1952.
39 Hatipoğlu Ö, Turumtay EA, Saygın AG, et al. Eva-luation of color stability of experimental dental composite resins prepared from bis-EFMA, a novel monomer system[J]. J Photopol Sci Technol, 2021, 34(3): 297-305.
40 Maryamnegari SM, Nateghi MR, Mohebat R. Effect of sintering and infiltration conditions on nanoscale dual network SiO2/polymethyl metacrylate compo-sites mimicking human enamel[J]. J Dent, 2022, 126: 104311.
41 Lovell LG, Newman SM, Bowman CN. The effects of light intensity, temperature, and comonomer composition on the polymerization behavior of dime-thacrylate dental resins[J]. J Dent Res, 1999, 78(8): 1469-1476.
42 Sideridou I, Tserki V, Papanastasiou G. Effect of chemical structure on degree of conversion in light-cured dimethacrylate-based dental resins[J]. Biomaterials, 2002, 23(8): 1819-1829.
43 Rey L, Duchet J, Galy J, et al. Structural heteroge-neities and mechanical properties of vinyl/dimethacrylate networks synthesized by thermal free radical polymerisation[J]. Polymer, 2002, 43(16): 4375-4384.
44 Li K, Kou HM, Rao JC, et al. Fabrication of enamel-like structure on polymer-infiltrated zirconia cera-mics[J]. Dent Mater, 2021, 37(4): e245-e255.
45 Phan AC, Tang ML, Nguyen JF, et al. High-temperature high-pressure polymerized urethane dimetha-crylate-mechanical properties and monomer release[J]. Dent Mater, 2014, 30(3): 350-356.
46 Nguyen JF, Migonney V, Ruse ND, et al. Properties of experimental urethane dimethacrylate-based dental resin composite blocks obtained via thermo-polymerization under high pressure[J]. Dent Mater, 2013, 29(5): 535-541.
47 Mainjot AK, Dupont NM, Oudkerk JC, et al. From artisanal to CAD-CAM blocks: state of the art of indirect composites[J]. J Dent Res, 2016, 95(5): 487-495.
48 Phan AC, Béhin P, Stoclet G, et al. Optimum pressure for the high-pressure polymerization of urethane dimethacrylate[J]. Dent Mater, 2015, 31(4): 406-412.
49 Béhin P, Stoclet G, Ruse ND, et al. Dynamic mechanical analysis of high pressure polymerized urethane dimethacrylate[J]. Dent Mater, 2014, 30(7): 728-734.
50 Pomès B, Behin P, Jordan L, et al. Influence of polymerization pressure and post-cure treatment on conversion degree and viscoelastic properties of polymer infiltrated ceramic network[J]. J Mech Behav Biomed Mater, 2021, 115: 104286.
[1] Feng Jin,Wu Hongkun. Research progress on antibacterial dental materials in the treatment of root caries [J]. Int J Stomatol, 2019, 46(4): 475-480.
[2] Zeng Yue, Xia Haibin, Wang Min. Research progress on the mechanical and antibacterial properties of nanomaterial-modified denture base [J]. Inter J Stomatol, 2018, 45(4): 455-458.
[3] Li Hongting1, Liu Tianshuang2. Influence of plasma treatment on the bonding property of dental restorative materials [J]. Inter J Stomatol, 2017, 44(2): 214-217.
[4] Cao Yong, He Haoyu, Li Hao, Liao Hongbing.. Effects of mixing methods on the porosity and mechanical properties of three different alginate impression materials [J]. Inter J Stomatol, 2017, 44(1): 24-27.
[5] LIU Shuang, ZHANG Lian-yun, LI Chang-yi.. Research progress on titanium alloy for dental framework u [J]. Inter J Stomatol, 2010, 37(3): 362-362~364.
[6] ZHANG Jie, LI Chang-yi. Influential factors of the abradability of dental materials [J]. Inter J Stomatol, 2009, 36(6): 723-725.
[7] LIU Zhen- hua1, CHANG Xiao- li1, ZHAO Xiao- yi2. Clinical evaluation of poster ior composite r estor ations [J]. Inter J Stomatol, 2008, 35(3): 259-259~260,264.
[8] DONG Qing- shan1, MAO Tian - qiu2. Construction of angiogenesis in bone tissue engineer ing [J]. Inter J Stomatol, 2008, 35(3): 321-321~324.
[9] GAO Xiu - fang, ZHANG Lian - yun, LI Chang- yi. Mechanism and evaluation method of dental mater ials abr asion [J]. Inter J Stomatol, 2008, 35(1): 83-84.
[10] WANG Zhi- gang, ZHANG Fu- qiang.. Mechanical Proper ties and Adhesion of Fiber Posts [J]. Inter J Stomatol, 2007, 34(03): 223-225.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!