Int J Stomatol ›› 2026, Vol. 53 ›› Issue (1): 91-97.doi: 10.7518/gjkq.2026107
• Reviews • Previous Articles Next Articles
Qiqi Shi(
),Xu Qin,Guangxun Zhu(
)
CLC Number:
| [1] | Tsvetkov P, Coy S, Petrova B, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins[J]. Science, 2022, 375(6586): 1254-1261. |
| [2] | Zhao G, Sun HJ, Zhang T, et al. Copper induce zebrafish retinal developmental defects via triggering stresses and apoptosis[J]. Cell Commun Signal, 2020, 18(1): 45. |
| [3] | Liao JZ, Yang F, Tang ZX, et al. Inhibition of Caspase-1-dependent pyroptosis attenuates copper-induced apoptosis in chicken hepatocytes[J]. Ecotoxicol Environ Saf, 2019, 174: 110-119. |
| [4] | Tao XQ, Wan XL, Wu D, et al. A tandem activation of NLRP3 inflammasome induced by copper oxide nanoparticles and dissolved copper ion in J774A.1 macrophage[J]. J Hazard Mater, 2021, 411: 125134. |
| [5] | Chen LY, Min JX, Wang FD. Copper homeostasis and cuproptosis in health and disease[J]. Signal Transduct Target Ther, 2022, 7: 378. |
| [6] | Li XG, Zhou WB, Zhu C, et al. Multi-omics analysis reveals prognostic and therapeutic value of cuproptosis-related lncRNAs in oral squamous cell carcinoma[J]. Front Genet, 2022, 13: 984911. |
| [7] | Yuan D, Li XQ, Qu FW, et al. Landscape and the immune patterns of cuproptosis in oral squamous cell carcinoma[J]. J Oral Pathol Med, 2023, 52(10): 951-960. |
| [8] | Wei BW, Wang AH, Liu W, et al. Identification of immunological characteristics and cuproptosis-rela-ted molecular clusters in primary Sjögren’s syndrome[J]. Int Immunopharmacol, 2024, 126: 111251. |
| [9] | Oliveri V. Biomedical applications of copper ionophores[J]. Coord Chem Rev, 2020, 422: 213474. |
| [10] | Nagai M, Vo NH, Shin Ogawa L, et al. The oncology drug elesclomol selectively transports copper to the mitochondria to induce oxidative stress in cancer cells[J]. Free Radic Biol Med, 2012, 52(10): 2142-2150. |
| [11] | Falls-Hubert KC, Butler AL, Gui K, et al. Disulfiram causes selective hypoxic cancer cell toxicity and radio-chemo-sensitization via redox cycling of copper[J]. Free Radic Biol Med, 2020, 150: 1-11. |
| [12] | Skrott Z, Mistrik M, Andersen KK, et al. Alcohol-abuse drug disulfiram targets cancer via p97 segregase adaptor NPL4[J]. Nature, 2017, 552(7684): 194-199. |
| [13] | Zhang JM, Duan DZ, Xu JQ, et al. Redox-dependent copper carrier promotes cellular copper uptake and oxidative stress-mediated apoptosis of cancer cells[J]. ACS Appl Mater Interfaces, 2018, 10(39): 33010-33021. |
| [14] | Ji P, Wang P, Chen H, et al. Potential of copper and copper compounds for anticancer applications[J]. Pharmaceuticals (Basel), 2023, 16(2): 234. |
| [15] | Zulkifli M, Spelbring AN, Zhang YT, et al. FDX1-dependent and independent mechanisms of elesclomol-mediated intracellular copper delivery[J]. Proc Natl Acad Sci U S A, 2023, 120(10): e2216722120. |
| [16] | Braymer JJ, Freibert SA, Rakwalska-Bange M, et al. Mechanistic concepts of iron-sulfur protein biogenesis in Biology[J]. Biochim Biophys Acta Mol Cell Res, 2021, 1868(1): 118863. |
| [17] | Tsvetkov P, Detappe A, Cai K, et al. Mitochondrial metabolism promotes adaptation to proteotoxic stress[J]. Nat Chem Biol, 2019, 15(7): 681-689. |
| [18] | Zhang M, Liu Z, Le Y, et al. Iron-sulfur clusters: a key factor of regulated cell death in cancer[J]. Oxid Med Cell Longev, 2022, 2022: 7449941. |
| [19] | Lill R, Freibert SA. Mechanisms of mitochondrial iron-sulfur protein biogenesis[J]. Annu Rev Biochem, 2020, 89: 471-499. |
| [20] | Yi HS, Chen T, He GT, et al. Retinoic acid mitigates the NSC319726-induced spermatogenesis dysfunction through cuproptosis-independent mechanisms[J]. Cell Biol Toxicol, 2024, 40(1): 26. |
| [21] | Lin CH, Chin Y, Zhou M, et al. Protein lipoylation: mitochondria, cuproptosis, and beyond[J]. Trends Biochem Sci, 2024, 49(8): 729-744. |
| [22] | Dreishpoon MB, Bick NR, Petrova B, et al. FDX1 regulates cellular protein lipoylation through direct binding to LIAS[J]. J Biol Chem, 2023, 299(9): 105046. |
| [23] | Linder MC. Copper homeostasis in mammals, with emphasis on secretion and excretion. a review[J]. Int J Mol Sci, 2020, 21(14): 4932. |
| [24] | Kim H, Wu XB, Lee J. SLC31 (CTR) family of copper transporters in health and disease[J]. Mol Aspects Med, 2013, 34(2/3): 561-570. |
| [25] | Tsang T, Davis CI, Brady DC. Copper biology[J]. Curr Biol, 2021, 31(9): R421-R427. |
| [26] | Xue Q, Kang R, Klionsky DJ, et al. Copper metabolism in cell death and autophagy[J]. Autophagy, 2023, 19(8): 2175-2195. |
| [27] | van den Berghe PVE, Klomp LWJ. Posttranslational regulation of copper transporters[J]. J Biol Inorg Chem, 2010, 15(1): 37-46. |
| [28] | Skopp A, Boyd SD, Ullrich MS, et al. Copper-zinc superoxide dismutase (Sod1) activation terminates interaction between its copper chaperone (Ccs) and the cytosolic metal-binding domain of the copper importer Ctr1[J]. Biometals, 2019, 32(4): 695-705. |
| [29] | Liu SY, Ge JY, Chu YT, et al. Identification of hub cuproptosis related genes and immune cell infiltration characteristics in periodontitis[J]. Front Immunol, 2023, 14: 1164667. |
| [30] | 赵丹丹, 郭子怡, 郭易阳, 等. 基于机器学习和生物信息学分析的铜死亡相关基因在牙周炎中的作用研究[J]. 中华老年口腔医学杂志, 2023, 21(6): 332-336. |
| Zhao DD, Guo ZY, Guo YY, et al. Role of cuproptosis-related genes in periodontitis based on machine learning and bioinformatics analysis[J]. Chin J Ge-riatr Dent, 2023, 21(6): 332-336. | |
| [31] | Liu N, He YQ, Chen XM, et al. Changes in cuproptosis-related gene expression in periodontitis: an integrated bioinformatic analysis[J]. Life Sci, 2024, 338: 122388. |
| [32] | Fu YY, Zhong CB, Cui JH, et al. A comprehensive analysis of the role of cuproptosis in periodontitis through integrated analysis of single-cell and bulk RNA sequencing[J]. Arch Med Sci, 2024, 20(4): 1349-1357. |
| [33] | Ebersole JL, Kirakodu SS, Nguyen LM, et al. Transcriptomic features of programmed and inflammatory cell death in gingival tissues[J]. Oral Dis, 2024, 30(8): 5274-5293. |
| [34] | Zhang LJ, Tsai IC, Ni ZH, et al. Copper chelation therapy attenuates periodontitis inflammation throu-gh the cuproptosis/autophagy/lysosome axis[J]. Int J Mol Sci, 2024, 25(11): 5890. |
| [35] | Maiti BK, Moura I, Moura JJG. Molybdenum-copper antagonism in metalloenzymes and anti-copper therapy[J]. Chembiochem, 2024, 25(6): e202300679. |
| [36] | Hou KL, Lin SK, Kok SH, et al. Increased expression of glutaminase in osteoblasts promotes macrophage recruitment in periapical lesions[J]. J Endod, 2017, 43(4): 602-608. |
| [37] | Yang J, Gao YC, Mao H, et al. Qiju Dihuang Pill protects the lens epithelial cells via alleviating cuproptosis in diabetic cataract[J]. J Ethnopharmacol, 2024, 333: 118444. |
| [38] | Xiao YX, Yin JM, Liu P, et al. Triptolide-induced cuproptosis is a novel antitumor strategy for the treatment of cervical cancer[J]. Cell Mol Biol Lett, 2024, 29(1): 113. |
|
||