Int J Stomatol ›› 2024, Vol. 51 ›› Issue (6): 756-762.doi: 10.7518/gjkq.2024076

• Reviews • Previous Articles     Next Articles

Research progress on the role and mechanism of pannexins in regulating oral and orofacial pain

Yuheng Feng(),Fei Liu,Yanyan Zhang,Jiefei Shen()   

  1. State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Dept. of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2024-04-08 Revised:2024-05-23 Online:2024-11-01 Published:2024-11-04
  • Contact: Jiefei Shen E-mail:Fqqaioth@163.com;shenjiefei@scu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(81870800)

Abstract:

The pathological mechanism of orofacial pain is complex, and long-lasting effective clinical treatment me-thods are lacking, causing a heavy burden on patients’ lives. Pannexins (PANX), which are broadly expressed in the peri-pheral and central nervous systems, play a crucial role in regulating the development of orofacial pain. This review focuses on the structure and function of PANX as well as its role and mechanism in pain, including neuropathic pain, inflammatory pain, and other orofacial pain. We aim to provide a theoretical basis and treatment strategies for the diagnosis and treatment of orofacial pain by gaining a deep understanding of the role and function of PANX.

Key words: pannexin, orafacial neuropathic pain, signaling pathways, trigeminal ganglion

CLC Number: 

  • R78

TrendMD: 
1 Jin MY, Everett ES, Abd-Elsayed A. Microbiological and physiological effects of pain[J]. Curr Pain Headache Rep, 2023, 27(6): 165-173.
2 Galkov MD, Surin AM, Lisina OY, et al. Neurodegeneration and neuroinflammation: the role of pannexin 1[J]. Neurochem J, 2023, 17(4): 727-739.
3 曹烨, 雷杰, 刘木清, 等. 口颌面疼痛国际分类与诊断标准(第一版)(一)[J]. 中国口腔医学继续教育杂志, 2022, 25(3): 136-143.
Cao Y, Lei J, Liu MQ, et al. International classification of orofacial pain (1st edition)( Ⅰ)[J]. Chin J Stomatol Contin Educ, 2022, 25(3): 136-143.
4 Vier C, Almeida MB, Neves ML, et al. The effectiveness of dry needling for patients with orofacial pain associated with temporomandibular dysfunction: a systematic review and meta-analysis[J]. Braz J Phys Ther, 2019, 23(1): 3-11.
5 Prasad SR, Kumar NR, Shruthi HR, et al. Temporomandibular pain[J]. J Oral Maxillofac Pathol, 2016, 20(2): 272-275.
6 Latorre G, González-García N, García-Ull J, et al. Diagnosis and treatment of trigeminal neuralgia: consensus statement from the Spanish Society of Neurology’s Headache Study Group[J]. Neurologia (Engl Ed), 2023: S2173-5808(23)00027-5.
7 Šklebar D, Vučemilo L, Šklebar T. Glossopharyngeal nerve as a source of orofacial pain-diagnostic and therapeutic challenges[J]. Acta Clin Croat, 2022, 61(): 90-95.
8 Koval M, Schug WJ, Isakson BE. Pharmacology of pannexin channels[J]. Curr Opin Pharmacol, 2023, 69: 102359.
9 Romero-Reyes M, Arman S, Teruel A, et al. Pharmacological management of orofacial pain[J]. Drugs, 2023, 83(14): 1269-1292.
10 Esseltine JL, Laird DW. Next-generation connexin and pannexin cell biology[J]. Trends Cell Biol, 2016, 26(12): 944-955.
11 Hussain N, Apotikar A, Pidathala S, et al. Cryo-EM structures of pannexin 1 and 3 reveal differences among pannexin isoforms[J]. Nat Commun, 2024, 15(1): 2942.
12 O’Donnell BL, Penuela S. Skin in the game: pannexin channels in healthy and cancerous skin[J]. Biochem J, 2023, 480(23): 1929-1949.
13 Van Campenhout R, Caufriez A, Tabernilla A, et al. Pannexin1 channels in the liver: an open enemy[J]. Front Cell Dev Biol, 2023, 11: 1220405.
14 Boassa D, Nguyen P, Hu J, et al. Pannexin2 oligomers localize in the membranes of endosomal vesicles in mammalian cells while Pannexin1 channels traffic to the plasma membrane[J]. Front Cell Neurosci, 2015, 8: 468.
15 Song F, Sun H, Huang L, et al. The role of Panne-xin3-modified human dental pulp-derived mesenchymal stromal cells in repairing rat cranial critical-sized bone defects[J]. Cell Physiol Biochem, 2017, 44(6): 2174-2188.
16 Leroy K, Vilas-Boas V, Gijbels E, et al. Expression of connexins and pannexins in diseased human liver[J]. EXCLI J, 2022, 21: 1111-1129.
17 Fu D, Song F, Sun H, et al. Expression of Pannexin 3 in human odontoblast-like cells and its hemichannel function in mediating ATP release[J]. Arch Oral Biol, 2015, 60(10): 1510-1516.
18 Caskenette D, Penuela S, Lee V, et al. Global deletion of Panx3 produces multiple phenotypic effects in mouse humeri and femora[J]. J Anat, 2016, 228(5): 746-756.
19 Huang H, Shakkottai VG. Targeting ion channels and purkinje neuron intrinsic membrane excitability as a therapeutic strategy for cerebellar ataxia[J]. Life (Basel), 2023, 13(6): 1350.
20 Harding EK, Zamponi GW. Central and peripheral contributions of T-type calcium channels in pain[J]. Mol Brain, 2022, 15(1): 39.
21 Alberti P, Semperboni S, Cavaletti G, et al. Neurons: the interplay between cytoskeleton, ion channels/transporters and mitochondria[J]. Cells, 2022, 11(16): 2499.
22 Paciello F, Pisani A, Rolesi R, et al. Oxidative stress and inflammation cause auditory system damage via glial cell activation and dysregulated expression of gap junction proteins in an experimental model of styrene-induced oto/neurotoxicity[J]. J Neuroinflammation, 2024, 21(1): 4.
23 Seo JH, Dalal MS, Contreras JE. Pannexin-1 channels as mediators of neuroinflammation[J]. Int J Mol Sci, 2021, 22(10): 5189.
24 Grimmer B, Krauszman A, Hu X, et al. Pannexin 1: a novel regulator of acute hypoxic pulmonary vasoconstriction[J]. Cardiovasc Res, 2022, 118(11): 2535-2547.
25 Wang N, De Bock M, Decrock E, et al. Paracrine signaling through plasma membrane hemichannels[J]. Biochim Biophys Acta, 2013, 1828(1): 35-50.
26 Giaume C, Leybaert L, Naus CC, et al. Connexin and pannexin hemichannels in brain glial cells: properties, pharmacology, and roles[J]. Front Pharmacol, 2013, 4: 88.
27 D’hondt C, Ponsaerts R, De Smedt H, et al. Panne-xins, distant relatives of the connexin family with specific cellular functions[J]. Bioessays, 2009, 31(9): 953-974.
28 Yang K, Xiao Z, He X, et al. Mechanisms of Pannexin 1 (PANX1) channel mechanosensitivity and its pathological roles[J]. Int J Mol Sci, 2022, 23(3): 1523.
29 Vogt A, Hormuzdi SG, Monyer H. Pannexin1 and Pannexin2 expression in the developing and mature rat brain[J]. Brain Res Mol Brain Res, 2005, 141(1): 113-120.
30 Ray A, Zoidl G, Wahle P, et al. Pannexin expression in the cerebellum[J]. Cerebellum, 2006, 5(3): 189-192.
31 Jeon YH, Youn DH. Spinal gap junction channels in neuropathic pain[J]. Korean J Pain, 2015, 28(4): 231-235.
32 Scholz J, Finnerup NB, Attal N, et al. The IASP classification of chronic pain for ICD-11: chronic neuropathic pain[J]. Pain, 2019, 160(1): 53-59.
33 Wang M, Pan W, Xu Y, et al. Microglia-mediated neuroinflammation: a potential target for the treatment of cardiovascular diseases[J]. J Inflamm Res, 2022, 15: 3083-3094.
34 Horton SM, Luna Lopez C, Blevins E, et al. Panne-xin 1 modulates axonal growth in mouse peripheral nerves[J]. Front Cell Neurosci, 2017, 11: 365.
35 Bravo D, Ibarra P, Retamal J, et al. Pannexin 1: a novel participant in neuropathic pain signaling in the rat spinal cord[J]. Pain, 2014, 155(10): 2108-2015.
36 Bravo D, Zepeda-Morales K, Maturana CJ, et al. NMDA and P2X7 receptors require Pannexin 1 activation to initiate and maintain nociceptive signaling in the spinal cord of neuropathic rats[J]. Int J Mol Sci, 2022, 23(12): 6705.
37 Weaver JL, Arandjelovic S, Brown G, et al. Hematopoietic pannexin 1 function is critical for neuropa-thic pain[J]. Sci Rep, 2017, 7: 42550.
38 Crespo Yanguas S, Willebrords J, Johnstone SR, et al. Pannexin1 as mediator of inflammation and cell death[J]. Biochim Biophys Acta Mol Cell Res, 2017, 1864(1): 51-61.
39 Winzer R, Nguyen DH, Schoppmeier F, et al. Purinergic enzymes on extracellular vesicles: immune modulation on the go[J]. Front Immunol, 2024, 15: 1362996.
40 Fang M, Lai R. The price of P2X7R freedom is neuroinflammation[J]. Immunity, 2024, 57(3): 401-403.
41 Xiao F, Waldrop SL, Bronk SF, et al. Lipoapoptosis induced by saturated free fatty acids stimulates mo-nocyte migration: a novel role for Pannexin1 in liver cells[J]. Purinergic Signal, 2015, 11(3): 347-359.
42 Dong S, Zhang K, Shi Y. Carbenoxolone has the potential to ameliorate acute incision pain in rats[J]. Mol Med Rep, 2021, 24(1): 520.
43 Mousseau M, Burma NE, Lee KY, et al. Microglial pannexin-1 channel activation is a spinal determinant of joint pain[J]. Sci Adv, 2018, 4(8): eaas9846.
44 Pinheiro AR, Paramos-de-Carvalho D, Certal M, et al. Bradykinin-induced Ca2+ signaling in human subcutaneous fibroblasts involves ATP release via hemichannels leading to P2Y12 receptors activation[J]. Cell Commun Signal, 2013, 11: 70.
45 Inoue H, Kuroda H, Ofusa W, et al. Functional coupling between the P2X7 receptor and Pannexin-1 channel in rat trigeminal ganglion neurons[J]. Int J Mol Sci, 2021, 22(11): 5978.
46 Kurisu R, Saigusa T, Aono Y, et al. Pannexin 1 role in the trigeminal ganglion in infraorbital nerve injury-induced mechanical allodynia[J]. Oral Dis, 2023, 29(4): 1770-1781.
47 Ohyama S, Ouchi T, Kimura M, et al. Piezo1-pannexin-1-P2X3 axis in odontoblasts and neurons mediates sensory transduction in dentinal sensitivity[J]. Front Physiol, 2022, 13: 891759.
48 Shibukawa Y, Sato M, Kimura M, et al. Odontoblasts as sensory receptors: transient receptor potential channels, pannexin-1, and ionotropic ATP receptors mediate intercellular odontoblast-neuron signal transduction[J]. Pflugers Arch, 2015, 467(4): 843-863.
49 Koyama R, Iwata K, Hayashi Y, et al. Pannexin 1-mediated ATP signaling in the trigeminal spinal subnucleus caudalis is involved in tongue cancer pain[J]. Int J Mol Sci, 2021, 22(21): 11404.
50 Silverman W, Locovei S, Dahl G. Probenecid, a gout remedy, inhibits pannexin 1 channels[J]. Am J Physiol Cell Physiol, 2008, 295(3): C761-C767.
51 Wang Q, Li HY, Ling ZM, et al. Inhibition of Schwann cell pannexin 1 attenuates neuropathic pain through the suppression of inflammatory responses[J]. J Neuroinflammation, 2022, 19(1): 244.
52 Poon IK, Chiu YH, Armstrong AJ, et al. Unexpected link between an antibiotic, pannexin channels and apoptosis[J]. Nature, 2014, 507(7492): 329-334.
53 Rusiecka OM, Tournier M, Molica F, et al. Panne-xin1 channels-a potential therapeutic target in inflammation[J]. Front Cell Dev Biol, 2022, 10: 1020826.
54 Dehghani A, Schenke M, van Heiningen SH, et al. Optogenetic cortical spreading depolarization indu-ces headache-related behaviour and neuroinflammatory responses some prolonged in familial hemiplegic migraine type 1 mice[J]. J Headache Pain, 2023, 24(1): 96.
55 Martins AC, Paoliello MMB, Docea AO, et al. Review of the mechanism underlying mefloquine-induced neurotoxicity[J]. Crit Rev Toxicol, 2021, 51(3): 209-216.
56 Zhang L, Xie Q, Hong H, et al. Increased serum pannexin-1 concentrations reflect illness severity and predict a poor prognosis after acute supratento-rial intracerebral hemorrhage: a prospective longitudinal cohort study[J]. Clin Chim Acta, 2023, 540: 117218.
57 Ni BK, Cai JY, Lin Q, et al. Evaluation of serum pannexin-1 as a prognostic biomarker for traumatic brain injury[J]. Clin Chim Acta, 2019, 488: 159-164.
58 Dahl GP, Conner GE, Qiu F, et al. High affinity complexes of pannexin channels and L-type calcium channel splice-variants in human lung: possible role in clevidipine-induced dyspnea relief in acute heart failure[J]. EbioMedicine, 2016, 10: 291-297.
59 Li S, Zang Z, He J, et al. Expression of pannexin 1 and 2 in cortical lesions from intractable epilepsy patients with focal cortical dysplasia[J]. Oncotarget, 2017, 8(4): 6883-6895.
60 Dossi E, Blauwblomme T, Moulard J, et al. Panne-xin-1 channels contribute to seizure generation in human epileptic brain tissue and in a mouse model of epilepsy[J]. Sci Transl Med, 2018, 10(443): eaar3796.
61 Cepeda C, Chang JW, Owens GC, et al. In Rasmussen encephalitis, hemichannels associated with microglial activation are linked to cortical pyramidal neuron coupling: a possible mechanism for cellular hyperexcitability[J]. CNS Neurosci Ther, 2015, 21(2): 152-163.
[1] LIU An -dong, LEI Jie, WANG Yuan-yin, ZHOU Jian. Research progress of trigeminal neuralgia and P2X receptors [J]. Inter J Stomatol, 2010, 37(02): 174-174~177.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!