Inter J Stomatol ›› 2018, Vol. 45 ›› Issue (5): 566-570.doi: 10.7518/gjkq.2018.05.012

• Reviews • Previous Articles     Next Articles

Progress on the application of fluorescent carbon dots to bacterial imaging and antibiosis

Yang Meng1,Liuran Wang1,Qiuling Tang1,Xiaohan Ding1,Yiyun Yue1,Dongning Liu1,Weixian Yu1,2()   

  1. 1. Dept. of Periodontology, Hospital of Stomatology, Jilin University, Changchun 130021, China
    2. Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
  • Received:2017-11-04 Revised:2018-06-11 Online:2018-09-01 Published:2018-09-20
  • Contact: Weixian Yu E-mail:yu-wei-xian@163.com
  • Supported by:
    This study was supported by National Natural Science Foundation of China(81570983);Natural Science Foundation of the Jilin Provincial Science & Technology Department(20150101076JC);Health & Technology Innovation Program of the Jilin Province(2016J073)

Abstract:

The fluorescent carbon dots is a new type of nano material consisting of carbon. Their diameter is less than 10 nm. With their excellent fluorescence properties, biocompatibility and surface functionalization, the fluorescent carbon dots has potential for application to the biomedical and antibacterial fields. In recent years, the fluorescent carbon dots become the focus of research in the field of Stomatology. In this article, the characteristics of fluorescent carbon dots and their applications to bacterial imaging and antibacterial field are revieweds.

Key words: fluorescent carbon dots, biological imaging, antibiosis

CLC Number: 

  • R318.08

TrendMD: 
[1] Xu XY, Ray R, Gu YL , et al. Electrophoretic ana-lysis and purification of fluorescent single-walled carbon nanotube fragments[J]. J Am Chem Soc, 2004, 126(40): 1 2736-12737.
[2] Wang KJ, Ji QJ, Li HX , et al. Synjournal and antibac-terial activity of silver@carbon nanocomposites[J]. J Inorg Biochem, 2017,166:64-67.
doi: 10.1016/j.jinorgbio.2016.11.002 pmid: 27835776
[3] Kilian M, Chapple IL, Hannig M , et al. The oral microbiome—an update for oral healthcare pro-fessionals[J]. Br Dent J, 2016,221(10):657-666.
doi: 10.1038/sj.bdj.2016.865 pmid: 27857087
[4] Hieke C, Kriebel K, Engelmann R , et al. Human dental stem cells suppress PMN activity after in-fection with the periodontopathogens Prevotella intermedia and Tannerella forsythia[J]. Sci Rep, 2016,6:39096.
doi: 10.1038/srep39096
[5] O’Brien-Simpson NM, Holden JA, Lenzo JC , et al. A therapeutic Porphyromonas gingivalis gingipain vaccine induces neutralising IgG1 antibodies that protect against experimental periodontitis[J]. NPJ Vaccines, 2016,1:16022.
doi: 10.1038/npjvaccines.2016.22
[6] Hubick S, Jayaraman A , McKeen A, et al. A potent synthetic inorganic antibiotic with activity against drug-resistant pathogens[J]. Sci Rep, 2017,7:41999.
doi: 10.1038/srep41999
[7] Li H, Kang Z, Liu Y , et al. Carbon nanodots: syn-journal, properties and applications[J]. J Mater Chem, 2012,22(46):24230-24253.
doi: 10.1039/c2jm34690g
[8] Sun C, Zhang Y, Wang P , et al. Synjournal of nitrogen and sulfur co-doped carbon dots from garlic for se-lective detection of Fe 3+ [J]. Nanoscale Res Lett, 2016,11(1):110.
doi: 10.1186/s11671-016-1326-8
[9] Singh RK, Patel KD, Mahapatra C , et al. C-dot gene-rated bioactive organosilica nanospheres in theranos-tics: multicolor luminescent and photothermal pro-perties combined with drug delivery capacity[J]. ACS Appl Mater Interfaces, 2016,8(37):24433-24444.
doi: 10.1021/acsami.6b07494
[10] Fu AH, Gu WW, Boussert B , et al. Semiconductor quantum rods as single molecule fluorescent biolo-gical labels[J]. Nano Lett, 2007,7(1):179-182.
doi: 10.1021/nl0626434 pmid: 3984543
[11] Yang ST, Cao L, Luo P , et al. Carbon dots for optical imaging in vivo[J]. J Am Chem Soc, 2009,131(32):11308-11309.
doi: 10.1021/ja904843x pmid: 19722643
[12] Li SH, Peng ZL, Dallman JL , et al. Crossing the blood-brain-barrier with transferrin conjugated carbon dots: a zebrafish model study[J]. Colloids Surf B Biointerfaces, 2016,145:251-256.
doi: 10.1016/j.colsurfb.2016.05.007
[13] Zhang JH, Niu AP, Li J , et al. In vivo characterization of hair and skin derived carbon quantum dots with high quantum yield as long-term bioprobes in zebra-fish[J]. Sci Rep, 2016,6:37860.
doi: 10.1038/srep37860
[14] Levy SB, Marshall B , Antibacterial resistance world-wide: causes, challenges and responses[J]. Nat Med, 2004,10(12 Suppl):S122-S129.
doi: 10.1038/nm1145 pmid: 15577930
[15] Gao WW, Thamphiwatana S, Angsantikul P , et al. Nanoparticle approaches against bacterial infections[J]. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2014,6(6):532-547.
doi: 10.1002/wnan.1282 pmid: 25044325
[16] Rodríguez-Rojas A, Rodríguez-Beltrán J, Couce A , et al. Antibiotics and antibiotic resistance: a bitter fight against evolution[J]. Int J Med Microbiol, 2013,303(6/7):293-297.
doi: 10.1016/j.ijmm.2013.02.004 pmid: 23517688
[17] Bai Y, Wang SJ, Yin X , et al. Factors associated with doctors’ knowledge on antibiotic use in China[J]. Sci Rep, 2016,6:23429.
doi: 10.1038/srep23429 pmid: 27010107
[18] Champion MM, Williams EA, Kennedy GM , et al. Direct detection of bacterial protein secretion using whole colony proteomics[J]. Mol Cell Proteomics, 2012,11(9):596-604.
doi: 10.1074/mcp.M112.017533 pmid: 3434784
[19] Kasibabu BS, D’souza SL, Jha S , et al. Imaging of bacterial and fungal cells using fluorescent carbon dots prepared from carica papaya juice[J]. J Fluoresc, 2015,25(4):803-810.
doi: 10.1007/s10895-015-1595-0
[20] Nandi S, Ritenberg M, Jelinek R , Bacterial detection with amphiphilic carbon dots[J]. Analyst, 2015,140(12):4232-4237.
doi: 10.1039/c5an00471c pmid: 25919018
[21] Hua XW, Bao YW, Wang HY , et al. Bacteria-derived fluorescent carbon dots for microbial live/dead dif-ferentiation[J]. Nanoscale, 2017,9(6):2150-2161.
doi: 10.1039/C6NR06558A
[22] Yeaman MR, Yount NY , Mechanisms of antimicro-bial peptide action and resistance[J]. Pharmacol Rev, 2003,55(1):27-55.
doi: 10.1124/pr.55.1.2
[23] Koppelman CM, Den Blaauwen T, Duursma MC , et al. Escherichia coli minicell membranes are enriched in cardiolipin[J]. J Bacteriol, 2001,183(20):6144-6147.
doi: 10.1128/JB.183.20.6144-6147.2001 pmid: 99695
[24] Zhang SK, Song JW, Gong F , et al. Design of an α-helical antimicrobial peptide with improved cell-selective and potent anti-biofilm activity[J]. Sci Rep, 2016,6:27394.
doi: 10.1038/srep27394
[25] Han HM, Gopal R, Park Y , Design and membrane-disruption mechanism of charge-enriched AMPs exhibiting cell selectivity, high-salt resistance, and anti-biofilm properties[J]. Amino Acids, 2016,48(2):505-522.
doi: 10.1007/s00726-015-2104-0
[26] Feng LY, Sun HJ, Ren JS , et al. Carbon-dot-deco-rated TiO2 nanotube arrays used for photo/voltage-induced organic pollutant degradation and the in-activation of bacteria[J]. Nanotechnology, 2016,27(11):115301.
doi: 10.1088/0957-4484/27/11/115301
[27] Schuber F , Influence of polyamines on membrane functions[J]. Biochem J, 1989,260(1):1-10.
doi: 10.1016/S0006-291X(89)80165-2 pmid: 2673211
[28] Li YJ, Harroun SG, Su Y , et al. Synjournal of self-assembled spermidine-carbon quantum dots effective against multidrug-resistant bacteria[J]. Adv Healthc Mater, 2016,5(19):2545-2554.
doi: 10.1002/adhm.v5.19
[29] Bing W, Sun HJ, Yan ZQ , et al. Programmed bac-teria death induced by carbon dots with different surface charge[J]. Small, 2016,12(34):4713-4718.
doi: 10.1002/smll.201600294 pmid: 27027246
[30] Zhao YY, Chen ZL, Chen YF , et al. Synergy of non-antibiotic drugs and pyrimidinethiol on gold nano-particles against superbugs[J]. J Am Chem Soc, 2013,135(35):12940-12943.
doi: 10.1021/ja4058635 pmid: 23957534
[31] Li P, Poon YF, Li WF , et al. A polycationic antim-icrobial and biocompatible hydrogel with microbe membrane suctioning ability[J]. Nat Mater, 2011,10(2):149-156.
doi: 10.1038/nmat2915
[32] Yang JJ, Zhang XD, Ma YH , et al. Carbon dot-based platform for simultaneous bacterial distinguishment and antibacterial applications[J]. ACS Appl Mater Interfaces, 2016,8(47):32170-32181.
doi: 10.1021/acsami.6b10398
[33] Liu JJ, Lu SY, Tang QL , et al. One-step hydrothermal synjournal of photoluminescent carbon nanodots with selective antibacterial activity against Porphyromonas gingivalis[J]. Nanoscale, 2017,9(21):7135-7142.
doi: 10.1039/C7NR02128C
[34] Thakur M, Pandey S, Mewada A , et al. Antibiotic conjugated fluorescent carbon dots as a theranostic agent for controlled drug release, bioimaging, and enhanced antimicrobial activity[J]. J Drug Deliv, 2014,2014:282193.
[1] Liu Yuhao,Zhang Tao. Research progress on shape memory polymers in bone defect repair and regeneration [J]. Int J Stomatol, 2020, 47(2): 219-224.
[2] Zou Jundong,Liu Dingkun,Yang Nan,Wang Mi,Liu Zhihui. An overview of bioactive glasses/chitosan composites for biomedical applications [J]. Int J Stomatol, 2020, 47(1): 90-94.
[3] Longbiao Li,Chenglin Wang,Ling Ye. Research progress on natural scaffold in the regeneration of dental pulp tissue engineering [J]. Inter J Stomatol, 2018, 45(6): 666-672.
[4] Jin Xin, Yang Junxing, Wang Yingnan, Liu Zhihui, Wang Bowei. Preparation and biomedical applications of alginate-chitosan microspheres [J]. Inter J Stomatol, 2018, 45(4): 414-419.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[9] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[10] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .