Inter J Stomatol ›› 2016, Vol. 43 ›› Issue (2): 212-215.doi: 10.7518/gjkq.2016.02.021

Previous Articles     Next Articles

Effects of pattern recognition receptors and pathogen associated molecular patterns in defense of periodontal disease

Liu Shuang, Li Shu   

  1. Dept. of Periodontics, Hospital of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan 250012, China)
  • Received:2015-08-20 Revised:2015-11-27 Online:2016-03-01 Published:2016-03-01

Abstract: Pattern recognition receptors(PRR) can sense the presence of microorganisms by recognizing pathogenassociated molecular patterns(PAMP), and timely transduce signals to downstream pathways and lead to inflammasome generation. PAMP include lipopolysaccharide (LPS), lipoteichoicacid, peptidoglycan, and teichoic acid mannose. Different PAMP can be recognized by different PRR, and trigger cytokines through serious of protein cascade reaction so as to effectively revitalizing natural immune response. After recognized by Toil-like receptor(TLR), PAMP can contribute to the synthesis and release of proinflammatory cytokines, induce nitric oxide dependency bactericidal activity and breath, and mediate human monocyte cell and epithelium cell expressing TLR2 apoptosis. After effected by TLR4, LPS can promote dendritic cells mature, induce the synthesis and release of TLR2, and secrete cytokines such as interleukin-6. Studying TLR will contribute to the understanding of chronic periodontal disease and provide new methods of the treatment. Therefore, research progress of the gingival epithelial PRR and PAMP on the surface of periodontal pathogens, as well as their function in periodontal disease, is reviewed in this paper.

Key words: pathogen associated molecular patterns, pattern recognition receptor, Toll like receptor, pathogen associated molecular patterns, pattern recognition receptor, Toll like receptor

CLC Number: 

  • R 781.4

TrendMD: 
[1] Gorr SU. Antimicrobial peptides in periodontal in nate defense[J]. Front Oral Biol, 2012, 15:84-98.
[2] Rauta PR, Samanta M, Dash HR, et al. Toll-like receptors(TLRs) in aquatic animals: signaling pathways, expressions and immune responses[J]. Immunol Lett, 2014, 158(1/2):14-24.
[3] Hughes FM, Turner DP, Todd Purves J. The potential repertoire of the innate immune system in the bladder: expression of pattern recognition receptors in the rat bladder and a rat urothelial cell line(MYP3 cells) [J]. Int Urol Nephrol, 2015, DOI:10.1007/ s11255-015-1126-6.
[4] Parthier C, Stelter M, Ursel C, et al. Structure of the Toll-Spatzle complex, a molecular hub in Drosophila development and innate immunity[J]. Proc Natl Acad Sci USA, 2014, 111(17):6281-6286.
[5] Wang JQ, Jeelall YS, Ferguson LL, et al. Toll-Like receptors and cancer: MYD88 mutation and inflammation[J]. Front Immunol, 2014, 5:367.
[6] Gambara G, De Cesaris P, De Nunzio C, et al. Tolllike receptors in prostate infection and cancer between bench and bedside[J]. J Cell Mol Med, 2013, 17(6):713-722.
[7] Palti Y. Toll-like receptors in bony fish: from genomics to function[J]. Dev Comp Immunol, 2011, 35(12):1263-1272.
[8] Callol A, Roher N, Amaro C, et al. Characterization of PAMP/PRR interactions in European eel(Anguilla anguilla) macrophage-like primary cell cultures[J]. Fish Shellfish Immunol, 2013, 35(4):1216-1223.
[9] West AP, Koblansky AA, Ghosh S. Recognition and signaling by toll-like receptors[J]. Annu Rev Cell Dev Biol, 2006, 22:409-437.
[10] Thomma BP, Nürnberger T, Joosten MH. Of PAMPs and effectors: the blurred PTI-ETI dichotomy[J]. Plant Cell, 2011, 23(1):4-15.
[11] Zhang J, Kong X, Zhou C, et al. Toll-like receptor recognition of bacteria in fish: ligand specificity and signal pathways[J]. Fish Shellfish Immunol, 2014, 41(2):380-388.
[12] Vaz J, Akbarshahi H, Andersson R. Controversial role of toll-like receptors in acute pancreatitis[J]. World J Gastroenterol, 2013, 19(5):616-630.
[13] Cen P, Ye L, Su QJ, et al. Methamphetamine inhibits Toll-like receptor 9-mediated anti-HIV activity in macrophages[J]. AIDS Res Hum Retroviruses, 2013, 29(8):1129-1137.
[14] Zhang Y, He X, Yu F, et al. Characteristic and functional analysis of toll-like receptors(TLRs) in the lophotrocozoan, Crassostrea gigas, reveals ancient origin of TLR-mediated innate immunity[J]. PLoS One, 2013, 8(10):e76464.
[15] Herath TD, Darveau RP, Seneviratne CJ, et al. Tetraandpenta-acylated lipid a structures of Porphyromonas gingivalis LPS differentially activate TLR4-mediated NF-κB signal transduction cascade and immuno-inflammatory response in human gingival fibroblasts[J]. PLoS One, 2013, 8(3):e58496.
[16] Foey AD, Crean S. Macrophage subset sensitivity to endotoxin tolerisation by Porphyromonas gingivalis [J]. PLoS One, 2013, 8(7):e67955.
[17] Oliveira-Nascimento L, Massari P, Wetzler LM. The role of TLR2 in infection and immunity[J]. Front Immunol, 2012, 3:79.
[18] 葛颂, 吴亚菲, 刘天佳, 等. 中、重度慢性牙周炎与冠心病相关性的研究[J]. 华西口腔医学杂志, 2008, 26(3):485-487.
Ge S, Wu YF, Liu TJ, et al. Study of the correlation be-tween moderately and severely chronic periodontitis and coronary heart disease[J]. West China J Stomatol, 2008, 26(3):485-487.
[19] Wara-aswapati N, Chayasadom A, Surarit R, et al. Induction of toll-like receptor expression by Porphyromonas gingivalis[J]. J Periodontol, 2013, 84(7):1010-1018.
[20] 付永伟, 和红兵, 欧炯光. 实验性糖尿病牙周炎诱导成骨细胞凋亡的研究[J]. 华西口腔医学杂志, 2009, 27(3):252-255.
Fu YW, He HB, Ou JG. Osteoblast apoptosis in experimental diabetic periodontitis in rats[J]. West China J Stomatol, 2009, 27(3):252-255.
[21] Promsudthi A, Poomsawat S, Limsricharoen W. The role of Toll-like receptor 2 and 4 in gingival tissues of chronic periodontitis subjects with type 2 diabetes [J]. J Periodont Res, 2014, 49(3):346-354.
(本文采编 王晴)
[1] Zhang Xu, Xu Enxin, Ruan Min.. Correlation between Toll-like receptor 9 and head and neck squamous cell carcinoma [J]. Inter J Stomatol, 2017, 44(5): 596-601.
[2] Ding Ye, Ren Jingyi, Yu Hongqiang, Zhou Yanmin, Yu Weixian. Roles of pathogen-associated and damage-associated molecular patterns in immune inflammatory response [J]. Inter J Stomatol, 2016, 43(2): 172-176.
[3] Huang Yihua, Ling Junqi. . Role of Toll-like receptor 2 and Toll-like receptor 4 in osteoblastic differentiation [J]. Inter J Stomatol, 2015, 42(4): 492-495.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 458 -460 .
[8] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 452 -454 .
[9] . [J]. Inter J Stomatol, 2008, 35(S1): .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .