国际口腔医学杂志 ›› 2026, Vol. 53 ›› Issue (1): 19-25.doi: 10.7518/gjkq.2026008

• 正畸学专栏 • 上一篇    下一篇

骨支抗前方牵引矫治生长发育期骨性Ⅲ类错畸形的研究进展

于澳(),韩光丽()   

  1. 口颌系统重建与再生全国重点实验室 口腔生物医学教育部重点实验室 口腔医学湖北省重点实验室 武汉大学口腔医学院 武汉大学口腔医院正畸二科 武汉 430079
  • 收稿日期:2024-12-24 修回日期:2025-03-07 出版日期:2026-01-01 发布日期:2025-12-31
  • 通讯作者: 韩光丽
  • 作者简介:于澳,硕士,Email:ya1999noora@163.com

Development of bone-anchored maxillary protraction for the orthopedic treatment of classmalocclusion in growing patients

Ao Yu(),Guangli Han()   

  1. State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, Dept. of Orthodontics Division Ⅱ, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
  • Received:2024-12-24 Revised:2025-03-07 Online:2026-01-01 Published:2025-12-31
  • Contact: Guangli Han

摘要:

面罩前方牵引装置是矫治生长发育期伴上颌发育不足的骨性Ⅲ类错𬌗畸形的常用矫治器。近年来,骨支抗前方牵引技术包括骨支抗联合面罩前方牵引和骨支抗联合Ⅲ类颌间牵引的应用显著提高了上颌骨前移的骨性效应,减少了牙齿代偿,能够有效改善面中部凹陷,在替牙列晚期和恒牙列早期的患者中表现出良好的临床效果。此外骨支抗联合Ⅲ类颌间牵引还对控制垂直向高度表现出一定优势。本文对骨支抗前方牵引的类型选择、是否需要联合横向扩弓、治疗时机以及长期疗效等方面的研究进展进行综述,并探讨其未来的发展方向。

关键词: 骨支抗, 前方牵引, 上颌发育不足, 骨性Ⅲ类错𬌗畸形

Abstract:

The facemask is the common appliance for the treatment of skeletal class Ⅲ patients with maxillary retrusion. Bone-anchored maxillary protraction (BAMP) appliances have recently been used to overcome the limitations of tooth-borne appliances in the interceptive treatment of class Ⅲ malocclusions. BAMP has demonstrated promising initial results, attributed to its potential to offer great skeletal changes with less unwanted displacement of dentition during the late mixed dentition and early permanent dentition stages. BAMP therapy techniques significantly improve the soft tissue profile, which leads to an improvement of the concave profile. Moreover, BAMP protocol with class Ⅲ elastics has shown certain advantages in controlling vertical skeletal pattern. This work aims to review the research progress in the selection of BAMP protocol, necessity of combining transverse arch expansion, optimal treatment timing, and long-term treatment outcomes and explore its future development.

Key words: bone anchorage, maxillary protraction, maxillary hypoplasia, skeletal class Ⅲ malocclusion

中图分类号: 

  • R783.5
[1] Smyth RSD, Ryan FS. Early treatment of class Ⅲ malocclusion with facemask[J]. Evid Based Dent, 2017, 18(4): 107-108.
[2] Kamath A, Sudhakar SS, Kannan G, et al. Bone-anchored maxillary protraction (BAMP): a review[J]. J Orthod Sci, 2022, 11: 8.
[3] Owens D, Watkinson S, Harrison JE, et al. Ortho-dontic treatment for prominent lower front teeth (ClassⅢmalocclusion) in children[J]. Cochrane Database Syst Rev, 2024, 4(4): CD003451.
[4] Kircelli BH, Pektas ZO. Midfacial protraction with skeletally anchored face mask therapy: a novel approach and preliminary results[J]. Am J Orthod Dentofacial Orthop, 2008, 133(3): 440-449.
[5] Sar C, Arman-Özçırpıcı A, Uçkan S, et al. Comparative evaluation of maxillary protraction with or without skeletal anchorage[J]. Am J Orthod Dentofacial Orthop, 2011, 139(5): 636-649.
[6] Jang YK, Chung DH, Lee JW, et al. A comparative evaluation of midfacial soft tissue and nasal bone changes with two maxillary protraction protocols: tooth-borne vs skeletal-anchored facemasks[J]. Orthod Craniofac Res, 2021, 24(): 5-12.
[7] Lee HJ, Choi DS, Jang I, et al. Comparison of facemask therapy effects using skeletal and tooth-borne anchorage[J]. Angle Orthod, 2022, 92(3): 307-314.
[8] Lee HJ, Jeong H, Park JH, et al. A comparison of maxillary posterior changes following facemask the-rapy: skeletal anchorage versus tooth-borne ancho-rage[J]. Orthod Craniofac Res, 2024, 27(2): 303-312.
[9] Jang JW, Lee MH, Chung DH, et al. Long-term effects of lateral nasal wall anchored facemasks compared with tooth-borne facemasks[J]. Am J Orthod Dentofacial Orthop, 2023, 164(4): 584-592.
[10] 王凡, 常荍, 梁舒然, 等. 个性化钛板与传统前方牵引治疗生长发育期骨性Ⅲ类错𬌗的疗效对比[J]. 中华口腔医学杂志, 2024, 59(9): 904-10.
Wang F, Chang Q, Liang SR, et al. A comparative study of the efficacy of customized titanium plates versus conventional maxillary protraction in the treatment of skeletal class Ⅲ patients[J]. Chin J Stomatol, 2024, 59(9): 904-910.
[11] Liu CM, Hou M, Liang LM, et al. Sutural distraction osteogenesis (SDO) versus osteotomy distraction osteogenesis (ODO) for midfacial advancement: a new technique and primary clinical report[J]. J Craniofac Surg, 2005, 16(4): 537-548.
[12] Tong HZ, Wang XG, Song T, et al. Trans-sutural distraction osteogenesis for midfacial hypoplasia in growing patients with cleft lip and palate: clinical outcomes and analysis of skeletal changes[J]. Plast Reconstr Surg, 2015, 136(1): 144-155.
[13] Zhang PY, Tong HZ, Chen YJ, et al. Effect of bone-borne trans-sutural distraction osteogenesis therapy on the cranial base of children with midfacial hy-poplasia due to cleft lip and palate[J]. J Craniofac Surg, 2023, 34(2): 551-555.
[14] Cha BK, Choi DS, Ngan P, et al. Maxillary protraction with miniplates providing skeletal anchorage in a growing class Ⅲ patient[J]. Am J Orthod Dentofacial Orthop, 2011, 139(1): 99-112.
[15] Ge YS, Liu J, Chen L, et al. Dentofacial effects of two facemask therapies for maxillary protraction[J]. Angle Orthod, 2012, 82(6): 1083-1091.
[16] Choi YK, Park JJ, Jeon HH, et al. Comparison of the skeletodental effects of miniscrew-anchored and tooth-anchored facemask treatment in growing patients with skeletal classⅢmalocclusions[J]. Orthod Craniofac Res, 2023, 26(4): 695-703.
[17] Elsaharty MA, Ghobashi SA, El-Shorbagy E. Evalua-tion of maxillary protraction using a mini screw-retained palatal C-shaped plate and face mask[J]. Turk J Orthod, 2024, 37(3): 146-152.
[18] Wilmes B, Nienkemper M, Drescher D. Application and effectiveness of a mini-implant- and tooth-borne rapid palatal expansion device: the hybrid hyrax[J]. World J Orthod, 2010, 11(4): 323-330.
[19] Ngan P, Wilmes B, Drescher D, et al. Comparison of two maxillary protraction protocols: tooth-borne versus bone-anchored protraction facemask treatment[J]. Prog Orthod, 2015, 16: 26.
[20] de Clerck H, Cevidanes L, Baccetti T. Dentofacial effects of bone-anchored maxillary protraction: a controlled study of consecutively treated class Ⅲ patients[J]. Am J Orthod Dentofacial Orthop, 2010, 138(5): 577-581.
[21] De Clerck HJ, Cornelis MA, Cevidanes LH, et al. Orthopedic traction of the maxilla with miniplates: a new perspective for treatment of midface deficiency[J]. J Oral Maxillofac Surg, 2009, 67(10): 2123-2129.
[22] Manhães FR, Valdrighi HC, de Menezes CC, et al. Treatment with bone-anchored maxillary protraction for correcting growing classⅢskeletal malocclusion[J]. AJO DO Clin Companion, 2023, 3(1): 22-29.
[23] de Clerck H, Nguyen T, de Paula LK, et al. Three-dimensional assessment of mandibular and glenoid fossa changes after bone-anchored class Ⅲ interma-xillary traction[J]. Am J Orthod Dentofacial Orthop, 2012, 142(1): 25-31.
[24] Elnagar MH, Elshourbagy E, Ghobashy S, et al. Comparative evaluation of 2 skeletally anchored ma-xillary protraction protocols[J]. Am J Orthod Dentofacial Orthop, 2016, 150(5): 751-762.
[25] Willmann JH, Nienkemper M, Tarraf NE, et al. Early class Ⅲ treatment with Hybrid-Hyrax-Facemask in comparison to Hybrid-Hyrax-Mentoplate-skeletal and dental outcomes[J]. Prog Orthod, 2018, 19(1): 42.
[26] Hu SS, An K, Peng YR. Comparative efficacy of the bone-anchored maxillary protraction protocols for orthopaedic treatment in skeletal class Ⅲ malocclusion: a Bayesian network meta-analysis[J]. Orthod Craniofac Res, 2022, 25(2): 243-250.
[27] Tanne K, Hiraga J, Sakuda M. Effects of directions of maxillary protraction forces on biomechanical changes in craniofacial complex[J]. Eur J Orthod, 1989, 11(4): 382-391.
[28] Lee NK, Baek SH. Stress and displacement between maxillary protraction with miniplates placed at the infrazygomatic crest and the lateral nasal wall: a 3-dimensional finite element analysis[J]. Am J Orthod Dentofacial Orthop, 2012, 141(3): 345-351.
[29] Yan XL, He WJ, Lin T, et al. Three-dimensional finite element analysis of the craniomaxillary complex during maxillary protraction with bone ancho-rage vs conventional dental anchorage[J]. Am J Orthod Dentofacial Orthop, 2013, 143(2): 197-205.
[30] Kim KY, Bayome M, Park JH, et al. Displacement and stress distribution of the maxillofacial complex during maxillary protraction with buccal versus pala-tal plates: finite element analysis[J]. Eur J Orthod, 2015, 37(3): 275-283.
[31] Wang F, Chang Q, Liang SR, et al. Three-dimensional finite element analysis on the effects of maxillary protraction with an individual titanium plate at multiple directions and locations[J]. Korean J Orthod, 2024, 54(2): 108-116.
[32] Shyagali TR, Patidar R, Gupta A, et al. Evaluation of stresses and displacement in the craniofacial region as a reaction to bone-anchored maxillary protraction in conjugation with posterior bite plane and rapid maxillary expansion in patients with class Ⅲ malocclusion: a finite element analysis study[J]. Am J Orthod Dentofacial Orthop, 2023, 164(2): 253-264.
[33] Rai P, Garg D, Tripathi T, et al. Biomechanical effects of Skeletally anchored class Ⅲ elastics on the maxillofacial complex: a 3D finite element analysis[J]. Prog Orthod, 2021, 22(1): 36.
[34] Vaughn GA, Mason B, Moon HB, et al. The effects of maxillary protraction therapy with or without rapid palatal expansion: a prospective, randomized clinical trial[J]. Am J Orthod Dentofacial Orthop, 2005, 128(3): 299-309.
[35] Foersch M, Jacobs C, Wriedt S, et al. Effectiveness of maxillary protraction using facemask with or without maxillary expansion: a systematic review and meta-analysis[J]. Clin Oral Investig, 2015, 19(6): 1181-1192.
[36] Miranda F, Garib D, Silva I, et al. Maxillary protraction anchored on miniplates versus miniscrews: th-ree-dimensional dentoskeletal comparison[J]. Eur J Orthod, 2024, 47(1): cjae071.
[37] Park JH, Bayome M, Zahrowski JJ, et al. Displacement and stress distribution by different bone-borne palatal expanders with facemask: a 3-dimensional finite element analysis[J]. Am J Orthod Dentofacial Orthop, 2017, 151(1): 105-117.
[38] Liou EJW. Effective maxillary orthopedic protraction for growing class Ⅲ patients: a clinical application simulates distraction osteogenesis[J]. Prog Orthod, 2005, 6(2): 154-171.
[39] Liou EJW, Tsai WC. A new protocol for maxillary protraction in cleft patients: repetitive weekly protocol of alternate rapid maxillary expansions and constrictions[J]. Cleft Palate Craniofac J, 2005, 42(2): 121-127.
[40] Wu ZP, Zhang X, Li ZX, et al. A Bayesian network meta-analysis of orthopaedic treatment in class Ⅲmalocclusion: maxillary protraction with skeletal anchorage or a rapid maxillary expander[J]. Orthod Craniofac Res, 2020, 23(1): 1-15.
[41] Kathem SJ, Matras RC, Abbas SOM. Class Ⅲ ma-locclusion treated with a 3D-printed hybrid hyrax distalizer combined with mentoplate using Alt-RAMEC protocol: a case report[J]. J Orthod, 2024, 51(2): 183-191.
[42] Ergul T, Gulec A. Comparison of the effectiveness of skeletal and tooth-borne protraction methods with or without alternate rapid maxillary expansion and constriction protocol in patients with class Ⅲ malocclusion[J]. Am J Orthod Dentofacial Orthop, 2025, 167(3): 282-295.
[43] Major MP, Wong JK, Saltaji H, et al. Skeletal anchored maxillary protraction for midface deficiency in children and early adolescents with class Ⅲ ma-locclusion: a systematic review and meta-analysis[J]. J World Fed Orthod, 2012, 1(2): e47-e54.
[44] Lim G, Kim KD, Park W, et al. Endodontic and surgical treatment of root damage caused by orthodontic miniscrew placement[J]. J Endod, 2013, 39(8): 1073-1077.
[45] Papageorgiou SN, Zogakis IP, Papadopoulos MA. Failure rates and associated risk factors of orthodontic miniscrew implants: a meta-analysis[J]. Am J Orthod Dentofacial Orthop, 2012, 142(5): 577-595.e7.
[46] Tarraf NE, Dalci O, Dalci K, et al. A retrospective comparison of two protocols for correction of skeletal class Ⅲ malocclusion in prepubertal children: hybrid hyrax expander with mandibular miniplates and rapid maxillary expansion with face mask[J]. Prog Orthod, 2023, 24(1): 3.
[47] Facio-Umaña JA, Chaurand J, Gonzalez-Luna P. Early class Ⅲ treatment with maxillary protraction-miniscrew-assisted rapid palatal expansion (MAR-PE) and mandibular miniplates[J]. Adv Oral Maxillofac Surg, 2021, 4: 100151.
[48] Tabellion M, Lisson JA. Dentofacial and skeletal effects of two orthodontic maxillary protraction protocols: bone anchors versus facemask[J]. Head Face Med, 2024, 20(1): 60.
[49] Büyükçavuş MH, Sari ÖF, Findik Y. Correction of late adolescent skeletal class Ⅲ using the Alt-RAMEC protocol and skeletal anchorage[J]. Korean J Orthod, 2023, 53(1): 54-64.
[50] Papadopoulou AK, Koletsi D, Masucci C, et al. A retrospective long-term comparison of early RME-facemask versus late Hybrid-Hyrax, Alt-RAMEC and miniscrew-supported intraoral elastics in gro-wing class Ⅲ patients[J]. Int Orthod, 2022, 20(1): 100603.
[51] Meazzini MC, Torre C, Cappello A, et al. Long-term follow-up of late maxillary orthopedic advancement with the Liou-Alternate rapid maxillary expansion-constriction technique in patients with skeletal class Ⅲ malocclusion[J]. Am J Orthod Dentofacial Orthop, 2021, 160(2): 221-230.
[52] Lin YF, Guo RZ, Hou LY, et al. Stability of maxillary protraction therapy in children with class Ⅲmalocclusion: a systematic review and meta-analysis[J]. Clin Oral Investig, 2018, 22(7): 2639-2652.
[53] Lee SH, Koh SD, Chung DH, et al. Comparison of skeletal anchorage and tooth-borne maxillary protraction followed by fixed appliance in class Ⅲ ma-locclusion[J]. Eur J Orthod, 2020, 42(2): 193-199.
[54] Zere E, Chaudhari PK, Sharan J, et al. Developing class Ⅲ malocclusions: challenges and solutions[J]. Clin Cosmet Investig Dent, 2018, 10: 99-116.
[55] Raghupathy Y, Ananthanarayanan V, Kailasam V, et al. Posttreatment stability following facemask therapy in patients with skeletal class Ⅲ malocclusion: a systematic review[J]. Int J Clin Pediatr Dent, 2023, 16(6): 897-907.
[56] Xu SK, Liu Y, Hou Y, et al. Maxillofacial growth changes after maxillary protraction therapy in children with classⅢmalocclusion: a dual control group retrospective study[J]. BMC Oral Health, 2024, 24(1): 7.
[57] Cornelis MA, Tepedino M, Riis NV, et al. Treatment effect of bone-anchored maxillary protraction in growing patients compared to controls: a systematic review with meta-analysis[J]. Eur J Orthod, 2021, 43(1): 51-68.
[58] Hodecker LD, Kühle R, Weichel F, et al. Concept for the treatment of class Ⅲ anomalies with a skeletally anchored appliance fabricated in the CAD/CAM process-the MIRA appliance[J]. Bioenginee-ring, 2023, 10(5): 616.
[59] Kim M, Li JW, Kim S, et al. Individualized 3D-printed bone-anchored maxillary protraction device for growth modification in skeletal class Ⅲ malocclusion[J]. J Pers Med, 2021, 11(11): 1087.
[1] 徐书奎,张珊,谢新宇,马文盛. 上颌前方牵引矫治骨性Ⅲ类错畸形远期疗效稳定性的研究进展[J]. 国际口腔医学杂志, 2023, 50(6): 646-652.
[2] 张珊,葛晓磊,李杰,谢新宇,常维维,马文盛. 上颌前方牵引矫治对颌骨生长发育长期影响的Meta分析[J]. 国际口腔医学杂志, 2022, 49(5): 548-555.
[3] 刘艳丽,赵薇,张碧莹,安晓莉. 生长发育期骨性Ⅲ类错畸形骨支抗上颌前牵引的研究进展[J]. 国际口腔医学杂志, 2019, 46(1): 112-118.
[4] 李建华 封小霞 杨璞. 骨支抗前牵引的研究进展[J]. 国际口腔医学杂志, 2013, 40(3): 416-418.
[5] 陈铮晰综述 陈振琦审校. 应用上颌前牵引治疗唇腭裂患者术后上颌发育不足的回顾分析[J]. 国际口腔医学杂志, 2012, 39(3): 397-400.
[6] 王学侠1 刘东旭2. 牙合垫式快速扩弓器加前方牵引治疗恒牙早期骨性Ⅲ类错畸形患者的疗效分析[J]. 国际口腔医学杂志, 2011, 38(6): 627-631.
[7] 胡心怡综述 潘晓岗审校. 青春期早期唇腭裂继发上颌发育不足的治疗及其长期稳定性的临床研究进展[J]. 国际口腔医学杂志, 2011, 38(5): 584-588.
[8] 叶金梅, 邓利琴, 翟佳羽, 姜杰, 王洪涛, 邓细河. 前牵引矫治乳牙期严重骨性Ⅲ类错畸形的侧貌变化[J]. 国际口腔医学杂志, 2009, 36(3): 263-266.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!