国际口腔医学杂志 ›› 2024, Vol. 51 ›› Issue (4): 433-440.doi: 10.7518/gjkq.2024053

• 牙周病学专栏 • 上一篇    下一篇

黏性骨在口腔种植及牙周领域中的研究进展

张婧1(),周思颖2,张新铎3,冯玉霞1,李健学1()   

  1. 1.联勤保障部队第940医院口腔科 兰州 730050
    2.新疆医科大学第一附属医院(附属口腔医院)口腔正畸科 乌鲁木齐 830011
    3.兰州市第一人民医院麻醉科 兰州 730000
  • 收稿日期:2023-12-20 修回日期:2024-03-21 出版日期:2024-07-01 发布日期:2024-06-24
  • 通讯作者: 李健学
  • 作者简介:张婧,医师,硕士,Email:<email>15332463315@163.com</email>
  • 基金资助:
    甘肃省自然科学基金(23JRRA530)

Progress of research on sticky bone in oral implant and periodontology

Jing Zhang1(),Siying Zhou2,Xinduo Zhang3,Yuxia Feng1,Jianxue Li1()   

  1. 1.Dept. of Stomatology, the 940th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Lanzhou 730050, China
    2.Dept. of Orthodontics, the First Affilicated Hospital of Xinjiang Medical University, Affiliated Stomatological Hospital, Urumqi 830011, China
    3.Dept. of Anesthesiology, the First People’s Hospital of Lanzhou, Lanzhou 730000, China
  • Received:2023-12-20 Revised:2024-03-21 Online:2024-07-01 Published:2024-06-24
  • Contact: Jianxue Li
  • Supported by:
    Gansu Provincial Natural Science Foundation(23JRRA530)

摘要:

黏性骨由自体血小板浓缩物与颗粒骨移植材料交联而成,具有良好的可塑性和稳定性,可以适应多种骨缺损区形态并维持成骨空间;同时,源于自体血小板浓缩物的白细胞和多种生长因子的释放促进了血管生成和组织愈合。目前,黏性骨已逐渐应用于口腔种植和牙周领域并取得了积极效果。本文阐述了黏性骨的组成、制备方式和作用机制,并对其在牙槽骨增量、即刻种植、牙槽嵴保存、上颌窦底提升以及牙周手术中的应用进行综述,旨在为进一步的机制研究和临床应用提供参考。

关键词: 黏性骨, 血小板浓缩物, 颗粒骨材料, 骨增量, 牙龈退缩

Abstract:

Sticky bone comprises autogenous platelet concentrates and bone-particle grafts. It exhibits favorable plasti-city and stability for fitting various bone defects and maintaining bone-regeneration space. Angiogenesis and tissue healing are promoted by the release of leukocytes and various growth factors from autogenous platelet concentrates. Sticky bone is currently being gradually applied in oral implantology and periodontology, and positive results have been obtained. This review briefly describes the composition, preparation protocol, and mechanism of sticky bone. Its applications in alveolar bone augmentation, immediate implant placement, alveolar ridge preservation, maxillary sinus floor elevation, and periodontal surgery are also outlined. This work can serve as a reference for further research on sticky bone and its clinical application.

Key words: sticky bone, platelet concentrates, bone particle grafts, bone augmentation, gingival recession

中图分类号: 

  • R783

图1

黏性骨制备程序a:静脉血;b:离心后获取AFG(上层);c:颗粒状骨移植材料;d:AFG与颗粒状骨移植材料聚合形成黏性骨;e:离心后管内分为血清(上层)、CGF(中层)和红细胞(下层);f:CGF压缩成CGF膜。"

《自体牙移植手术图谱》出版发行"

1 Elsalanty ME, Genecov DG. Bone grafts in craniofacial surgery[J]. Craniomaxillofac Trauma Reconstr, 2009, 2(3): 125-134.
2 Zhao R, Yang RJ, Cooper PR, et al. Bone grafts and substitutes in dentistry: a review of current trends and developments[J]. Molecules, 2021, 26(10): 3007.
3 Bhatt RA, Rozental TD. Bone graft substitutes[J]. Hand Clin, 2012, 28(4): 457-468.
4 Wang WH, Yeung KWK. Bone grafts and biomate-rials substitutes for bone defect repair: a review[J]. Bioact Mater, 2017, 2(4): 224-247.
5 Haugen HJ, Lyngstadaas SP, Rossi F, et al. Bone grafts: which is the ideal biomaterial[J]. J Clin Pe-riodontol, 2019, 46(): 92-102.
6 龚佳明, 张启航, 苟萍, 等. 自体牙本质用于牙槽嵴增量的Meta分析[J]. 华西口腔医学杂志, 2022, 40(5): 566-575.
Gong JM, Zhang QH, Gou P, et al. Meta-analysis of application of autogenous dentin for alveolar ridge augmentation[J]. West China J Stomatol, 2022, 40(5): 566-575.
7 Sohn DS, Heo JU, Kwak DH, et al. Bone regeneration in the maxillary sinus using an autologous fibrin-rich block with concentrated growth factors alone[J]. Implant Dent, 2011, 20(5): 389-395.
8 Sohn DS, Huang B, Kim J, et al. Utilization of auto-logous concentrated growth factors (CGF) enriched bone graft matrix (sticky bone) and CGF-enriched fibrin membrane in implant dentistry[J]. J Implant Adv Clin Dent, 2015, 7(10): 11-18.
9 Yung YL, Fu SC, Cheuk YC, et al. Optimisation of platelet concentrates therapy: composition, localisation, and duration of action[J]. Asia Pac J Sports Med Arthrosc Rehabil Technol, 2017, 7: 27-36.
10 Bielecki T, Dohan Ehrenfest DM. Platelet-rich plasma (PRP) and platelet-rich fibrin (PRF): surgical adjuvants, preparations for in situ regenerative medicine and tools for tissue engineering[J]. Curr Pharm Biotechnol, 2012, 13(7): 1121-1130.
11 Dohan Ehrenfest DM, Del Corso M, Diss A, et al. Three-dimensional architecture and cell composition of a Choukroun’s platelet-rich fibrin clot and membrane[J]. J Periodontol, 2010, 81(4): 546-555.
12 龚佳明, 赵瑞敏, 张启航, 等. 自体血小板浓缩物用于上颌窦底提升的系统评价再评价[J]. 中国口腔种植学杂志, 2023, 28(2): 102-108.
Gong JM, Zhao RM, Zhang QH, et al. The autologous platelet concentrates for maxillary sinus floor elevation: an overview of systematic reviews[J]. Chin J Oral Implantol, 2023, 28(2): 102-108.
13 Liao HT, Marra KG, Rubin JP. Application of platelet-rich plasma and platelet-rich fibrin in fat graf-ting: basic science and literature review[J]. Tissue Eng Part B Rev, 2014, 20(4): 267-276.
14 Zhu Y, Yuan M, Meng HY, et al. Basic science and clinical application of platelet-rich plasma for cartilage defects and osteoarthritis: a review[J]. Osteoarthritis Cartilage, 2013, 21(11): 1627-1637.
15 Dohan Ehrenfest DM, Rasmusson L, Albrektsson T. Classification of platelet concentrates: from pure platelet-rich plasma (P-PRP) to leucocyte- and platelet-rich fibrin (L-PRF)[J]. Trends Biotechnol, 2009, 27(3): 158-167.
16 Ahmed TAE, Dare EV, Hincke M. Fibrin: a versatile scaffold for tissue engineering applications[J]. Tissue Eng Part B Rev, 2008, 14(2): 199-215.
17 Burnouf T, Goubran HA, Chen TM, et al. Blood-derived biomaterials and platelet growth factors in regenerative medicine[J]. Blood Rev, 2013, 27(2): 77-89.
18 Shashank B, Bhushan M. Injectable platelet-rich fibrin (PRF): the newest biomaterial and its use in various dermatological conditions in our practice: a case series[J]. J Cosmet Dermatol, 2021, 20(5): 1421-1426.
19 Ghanaati S, Booms P, Orlowska A, et al. Advanced platelet-rich fibrin: a new concept for cell-based tissue engineering by means of inflammatory cells[J]. J Oral Implantol, 2014, 40(6): 679-689.
20 Isobe K, Watanebe T, Kawabata H, et al. Mechanical and degradation properties of advanced platelet-rich fibrin (A-PRF), concentrated growth factors (CGF), and platelet-poor plasma-derived fibrin (PPTF)[J]. Int J Implant Dent, 2017, 3(1): 17.
21 Fillingham Y, Jacobs J. Bone grafts and their substitutes[J]. Bone Joint J, 2016, 98-B(1 ): 6-9.
22 Putters TF, Wortmann DE, Schortinghuis J, et al. Morbidity of anterior iliac crest and calvarial bone donor graft sites: a 1-year randomized controlled trial[J]. Int J Oral Maxillofac Surg, 2018, 47(11): 1474-1480.
23 Reininger D, Cobo-Vázquez C, Rosenberg B, et al. Alternative intraoral donor sites to the chin and mandibular body-ramus[J]. J Clin Exp Dent, 2017, 9(12): e1474-e1481.
24 Benders KEM, van Weeren PR, Badylak SF, et al. Extracellular matrix scaffolds for cartilage and bone regeneration[J]. Trends Biotechnol, 2013, 31(3): 169-176.
25 Krasny K, Kamiński A, Krasny M, et al. Preparation of allogeneic bone for alveolar ridge augmentation[J]. Cell Tissue Bank, 2017, 18(3): 313-321.
26 Bracey DN, Seyler TM, Jinnah AH, et al. A porcine xenograft-derived bone scaffold is a biocompatible bone graft substitute: an assessment of cytocompatibility and the alpha-Gal epitope[J]. Xenotransplantation, 2019, 26(5): e12534.
27 Xu G, Guo RZ, Han LW, et al. Comparison of osteogenesis of bovine bone xenografts between true bone ceramics and decalcified bone matrix[J]. J Mater Sci Mater Med, 2022, 33(10): 75.
28 Zhang LY, Bi Q, Zhao C, et al. Recent advances in biomaterials for the treatment of bone defects[J]. Organogenesis, 2020, 16(4): 113-125.
29 Cheah CW, Al-Namnam NM, Lau MN, et al. Synthetic material for bone, periodontal, and dental tissue regeneration: where are we now, and where are we heading next[J]. Materials, 2021, 14(20): 6123.
30 Anitua E, Sánchez M, Orive G. Potential of endogenous regenerative technology for in situ regenerative medicine[J]. Adv Drug Deliv Rev, 2010, 62(7/8): 741-752.
31 Anitua E, Sánchez M, Orive G, et al. The potential impact of the preparation rich in growth factors (PRGF) in different medical fields[J]. Biomaterials, 2007, 28(31): 4551-4560.
32 Anitua E, Sánchez M, Orive G, et al. Delivering growth factors for therapeutics[J]. Trends Pharmacol Sci, 2008, 29(1): 37-41.
33 Xu Y, Qiu JL, Sun QF, et al. One-year results eva-luating the effects of concentrated growth factors on the healing of intrabony defects treated with or without bone substitute in chronic periodontitis[J]. Med Sci Monit, 2019, 25: 4384-4389.
34 Mourão CF, Valiense H, Melo ER, et al. Obtention of injectable platelets rich-fibrin (i-PRF) and its poly-merization with bone graft: technical note[J]. Rev Col Bras Cir, 2015, 42(6): 421-423.
35 Ponte JS, Pérez-Guerrero JA, Aragão FA, et al. Histomorphometric evaluation of human extraction soc-kets treated with autologous fibrin, sticky bone or biphasic calcium phosphate[J]. Acta Odontol Latinoam, 2021, 34(3): 271-281.
36 van Orten A, Goetz W, Bilhan H. Tooth-derived granules in combination with platelet-rich fibrin (“sticky tooth”) in socket preservation: a histological evaluation[J]. Dent J, 2022, 10(2): 29.
37 Tony JB, Parthasarathy H, Tadepalli A, et al. CBCT evaluation of sticky bone in horizontal ridge augmentation with and without collagen membrane-a randomized parallel arm clinical trial[J]. J Funct Biomater, 2022, 13(4): 194.
38 Rupawala TA, Patel SM, Shah NH, et al. Efficacy of sticky bone as a novel autologous graft for mandibular third molar extraction socket healing-an evaluative study[J]. Ann Maxillofac Surg, 2020, 10(2): 335-343.
39 Csönge L, Bozsik Á, Tóth-Bagi Z, et al. Regenerative medicine: characterization of human bone matrix gelatin (BMG) and folded platelet-rich fibrin (F-PRF) membranes alone and in combination (sticky bone)[J]. Cell Tissue Bank, 2021, 22(4): 711-717.
40 Wang HL, Boyapati L. “PASS” principles for predictable bone regeneration[J]. Implant Dent, 2006, 15(1): 8-17.
41 Cortellini S, Castro AB, Temmerman A, et al. Leucocyte- and platelet-rich fibrin block for bone augmentation procedure: a proof-of-concept study[J]. J Clin Periodontol, 2018, 45(5): 624-634.
42 Pavlovic V, Ciric M, Jovanovic V, et al. Platelet-rich fibrin: basics of biological actions and protocol modifications[J]. Open Med, 2021, 16(1): 446-454.
43 Joshi CP, D’Lima CB, Karde PA, et al. Ridge augmentation using sticky bone: a combination of human tooth allograft and autologous fibrin glue[J]. J Indian Soc Periodontol, 2019, 23(5): 493-496.
44 Cortellini S, Castro AB, Temmerman A, et al. Leucocyte- and platelet-rich fibrin block for bone augmentation procedure: a proof-of-concept study[J]. J Clin Periodontol, 2018, 45(5): 624-634.
45 Iancu SA, Referendaru D, Iancu IA, et al. Imme-diate postoperative complications after lateral ridge augmentation-a clinical comparison between bone shell technique and sticky bone[J]. J Med Life, 2022, 15(4): 533-538.
46 Barbu HM, Iancu SA, Rapani A, et al. Guided bone regeneration with concentrated growth factor enriched bone graft matrix (sticky bone) vs. bone-shell technique in horizontal ridge augmentation: a retros-pective study[J]. J Clin Med, 2021, 10(17): 3953.
47 Marwan Arnab A, Ghonaim I. Comparative study between using A-PRF membrane with sticky bone and traditional GBR procedure at the bone defected area[J]. Clin Oral Implants Res, 2018, 29(S17): 121.
48 Aboelela S, Fattouh H, Abdel Rasoul M. Ridge augmentation using autologous concentrated growth factors (CGF) enriched bone graft matrix (sticky bone) versus guided bone regeneration using native collagen membrane in horizontally deficient maxilla[J]. Egypt Dent J, 2021, 67(4): 3061-3070.
49 Aggarwal S, Rawat P, Jain S, et al. A Simplified approach for managing severe horizontal ridge atrophy using sticky bone enriched with autologous injectable PRF: a case report[J]. Int J Sci Res, 2021, 9(4): 27-28.
50 Cirmeni M, Fedele O, Giammarinaro E, et al. Immediate implant and socket preservation using sticky bone and leukocyte-platelet-rich fibrin in the ante-rior maxilla: a 3-year case report[J]. Clin Adv Perio-dontics, 2023, 13(3): 144-148.
51 Abdullah A, Abdelmabood AA. Autogenous bone ring transplant versus sticky bone in defective socket augmentation with simultaneous implant placemen[J]. Egypt Dent J, 2020, 66(3): 1459-1507.
52 Sadighi Shamami M, Sadighi Shamami M, Safara-lizadeh R, et al. The effect of sticky bone on implant stability in ridge splitting and simultaneously implantation[J]. Clin Oral Implants Res, 2018, 29(S17): 287.
53 Eid ME, Mohamed MA, Tawfik A. Immediate implant placement combined with sticky bone and enriched fibrin membrane for teeth exhibiting periapical pathosis[J]. Al-Azhar Assiut Dent J, 2020, 3(2): 106-112.
54 Kalsi AS, Kalsi JS, Bassi S. Alveolar ridge preservation: why, when and how[J]. Br Dent J, 2019, 227(4): 264-274.
55 Soni R, Priya A, Yadav H, et al. Bone augmentation with sticky bone and platelet-rich fibrin by ridge-split technique and nasal floor engagement for immediate loading of dental implant after extracting impacted canine[J]. Natl J Maxillofac Surg, 2019, 10(1): 98-101.
56 Andrade C, Camino J, Nally M, et al. Combining autologous particulate dentin, L-PRF, and fibrinogen to create a matrix for predictable ridge preservation: a pilot clinical study[J]. Clin Oral Investig, 2020, 24(3): 1151-1160.
57 Chen YH, Cai ZY, Zheng DG, et al. Inlay osteotome sinus floor elevation with concentrated growth factor application and simultaneous short implant placement in severely atrophic maxilla[J]. Sci Rep, 2016, 6: 27348.
58 Boyne PJ, James RA. Grafting of the maxillary sinus floor with autogenous marrow and bone[J]. J Oral Surg, 1980, 38(8): 613-616.
59 龚佳明, 赵瑞敏, 潘宏伟, 等. 屏障膜对侧壁开窗式上颌窦底提升影响的Meta分析[J]. 兰州大学学报(医学版), 2022, 48(10): 24-31.
Gong JM, Zhao RM, Pan HW, et al. Meta-analysis of barrier membranes over the lateral sinus floor augmentation procedures[J]. J Lanzhou Univ (Med Sci), 2022, 48(10): 24-31.
60 Mu ZX, He QQ, Xin LJ, et al. Effects of injectable platelet rich fibrin on bone remodeling in combination with DBBM in maxillary sinus elevation: a randomized preclinical study[J]. Am J Transl Res, 2020, 12(11): 7312-7325.
61 Shamami MS, Safaralizadeh S, Safaralizadeh R, et al. The effect of use of platelet-rich fibrin (PRF) mixed with bone graft (sticky bone) on implant stability in lateral approach sinus lift procedure and simultaneous implantation: a double blinded rando-mized clinical trial[J]. J Clin Periodont, 2018, 45(S19): 326-326.
62 Kapa BP, N K S, G V G, et al. Coronally advanced flap combined with sticky bone and i-PRF-coated collagen membrane to treat single maxillary gingival recessions: case series[J]. Clin Adv Periodontics, 2022, 12(3): 147-151.
63 Mitra D, Kandawalla S, Potdar P, et al. Evaluation of the efficacy of sticky bone and concentrated growth factor membrane along with a coronally advanced flap as compared to coronally advanced flap alone in the treatment of Miller’s class Ⅰ and class Ⅱ gingival recession defects[J]. J Indian Soc Pe-riodontol, 2022, 26(6): 577-584.
[1] 王家烯,吕鸣樾,袁泉. 黏性骨在口腔组织再生中的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 594-602.
[2] 蒋青松,赖文莉,王艳. 骨增量技术在口腔正畸领域的研究进展[J]. 国际口腔医学杂志, 2023, 50(2): 243-250.
[3] 李寒月,夏露露,华先明. 牙周加速成骨正畸临床应用效果的研究进展[J]. 国际口腔医学杂志, 2020, 47(2): 206-211.
[4] 郭淑娟, 刘倩, 丁一. 牙周病和植体周病国际新分类简介[J]. 国际口腔医学杂志, 2019, 46(2): 125-134.
[5] 张停停,宗娟娟. 自体结缔组织移植术的研究现状[J]. 国际口腔医学杂志, 2019, 46(1): 89-93.
[6] 雷文龙1 施斌1,2. 血小板衍生生长因子-BB在口腔种植领域中的作用[J]. 国际口腔医学杂志, 2014, 41(2): 199-203.
[7] 施优灵1 韩光丽2. 正畸治疗中的牙龈退缩[J]. 国际口腔医学杂志, 2014, 41(1): 57-62.
[8] 祝士雯 陈振琦. 唇腭裂近裂隙区牙龈退缩的研究进展[J]. 国际口腔医学杂志, 2013, 40(3): 385-388.
[9] 张晨1 赵绮2综述秦红霞1审校. 冠向复位术治疗MillerⅠ、Ⅱ度牙龈退缩[J]. 国际口腔医学杂志, 2012, 39(5): 639-641.
[10] 张晓丹 胡丹青综述 平飞云审校. 牵张成骨和引导骨再生术在垂直骨增量上的比较研究[J]. 国际口腔医学杂志, 2012, 39(2): 190-193.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!