国际口腔医学杂志 ›› 2022, Vol. 49 ›› Issue (3): 362-366.doi: 10.7518/gjkq.2022037
Zhao Zhe(),Wang Fu,Zheng Xiuli,An Na,Chen Jihua.(
)
摘要:
功能载荷下的牙移动是咀嚼过程中的一种基本生理特征,在维持牙弓的受力平衡,避免食物嵌塞和牙折的发生等方面均起着重要作用。近年来随着研究的持续进展,新技术、新方法不断应用,功能载荷下牙移动的研究不断深入,其测量方法也在向高精度和数字化的方向靠拢。本文回顾了近年来的相关文献,从功能载荷下牙移动的生理基础、影响因素、测量方式和临床意义几个方面展开综述,以期为客观全面的描述咀嚼状态下的牙齿移动情况提供参考。
中图分类号:
1 | Keilig L, Drolshagen M, Tran KL, et al. In vivo measurements and numerical analysis of the biomechanical characteristics of the human periodontal ligament[J]. Ann Anat, 2016, 206: 80-88. |
2 | Naveh GR, Lev-Tov Chattah N, Zaslansky P, et al. Tooth-PDL-bone complex: response to compressive loads encountered during mastication-a review[J]. Arch Oral Biol, 2012, 57(12): 1575-1584. |
3 | Pei DD, Hu XY, Jin CX, et al. Energy storage and dissipation of human periodontal ligament during mastication movement[J]. ACS Biomater Sci Eng, 2018, 4(12): 4028-4035. |
4 | de Jong T, Bakker AD, Everts V, et al. The intricate anatomy of the periodontal ligament and its development: lessons for periodontal regeneration[J]. J Periodontal Res, 2017, 52(6): 965-974. |
5 | Dorow C, Krstin N, Sander FG. Experiments to determine the material properties of the periodontal ligament[J]. J Orofac Orthop, 2002, 63(2): 94-104. |
6 | Sinescu C, Duma VF, Dodenciu D, et al. Mechanical properties of the periodontal system and of dental constructs deduced from the free response of the tooth[J]. J Healthc Eng, 2018, 2018:4609264. |
7 | Ben-Zvi Y, Maria R, Pierantoni M, et al. Response of the tooth-periodontal ligament-bone complex to load: a microCT study of the minipig molar[J]. J Struct Biol, 2019, 205(2): 155-162. |
8 | Morgenthal A, Zaslansky P, Fleck C. Cementum thickening leads to lower whole tooth mobility and reduced root stresses: an in silico study on aging effects during mastication[J]. J Struct Biol, 2021, 213(2): 107726. |
9 | Jang AT, Merkle AP, Fahey KP, et al. Multiscale biomechanical responses of adapted bone-periodontal ligament-tooth fibrous joints[J]. Bone, 2015, 81: 196-207. |
10 | Ishihara H. Influence of occlusal contacts on tooth displacement[J]. Kokubyo Gakkai Zasshi, 2000, 67(4): 310-321. |
11 | Nikolaus A, Currey JD, Lindtner T, et al. Importance of the variable periodontal ligament geometry for whole tooth mechanical function: a validated numerical study[J]. J Mech Behav Biomed Mater, 2017, 67: 61-73. |
12 | Kim YG, Lee SM, Bae S, et al. Effect of aging on homeostasis in the soft tissue of the periodontium: a narrative review[J]. J Pers Med, 2021, 11(1): 58. |
13 | Wu JL, Liu YF, Li BX, et al. Numerical simulation of optimal range of rotational moment for the mandibular lateral incisor, canine and first premolar bas-ed on biomechanical responses of periodontal ligaments: a case study[J]. Clin Oral Investig, 2021, 25(3): 1569-1577. |
14 | Bouton A, Simon Y, Goussard F, et al. New finite element study protocol: clinical simulation of ortho-dontic tooth movement[J]. Int Orthod, 2017, 15(2): 165-179. |
15 | Picton DC. Tilting movements of teeth during biting[J]. Arch Oral Biol, 1962, 7: 151-159. |
16 | Behrend DA. A method of studying patterns of tooth displacement in simulated chewing cycles in man[J]. Arch Oral Biol, 1974, 19(1): 23-27. |
17 | Siebert G. Recent results concerning physiological tooth movement and anterior guidance[J]. J Oral Rehabil, 1981, 8(6): 479-493. |
18 | Parfitt GJ. Measurement of the physiological mobility of individual teeth in an axial direction[J]. J Dent Res, 1960, 39: 608-618. |
19 | Salamati A, Chen J, Herring SW, et al. Functional tooth mobility in young pigs[J]. J Biomech, 2020, 104: 109716. |
20 | Boldt J, Knapp W, Proff P, et al. Measurement of tooth and implant mobility under physiological loading conditions[J]. Ann Anat, 2012, 194(2): 185-189. |
21 | Yomoda S, Hisano M, Amemiya K, et al. The interrelationship between bolus breakdown, mandibular first molar displacement and jaw movement during mastication[J]. J Oral Rehabil, 2004, 31(2): 99-109. |
22 | Provatidis CG. A comparative FEM-study of tooth mobility using isotropic and anisotropic models of the periodontal ligament. Finite element method[J]. Med Eng Phys, 2000, 22(5): 359-370. |
23 | Karimi A, Razaghi R, Biglari H, et al. Finite element modeling of the periodontal ligament under a realistic kinetic loading of the jaw system[J]. Saudi Dent J, 2020, 32(7): 349-356. |
24 | Kasahara K. Observations of interproximal contact relationship during function[J]. Kokubyo Gakkai Zasshi, 1999, 66(4): 370-381. |
25 | 李琳琳, 陈虎, 李伟伟, 等. 正常𬌗力咬合状态下后牙移动的口内三维扫描测量和分析[J].中华口腔医学杂志, 2020, 55(10): 743-749. |
Li LL, Chen H, Li WW, et al. Investigation of posterior teeth displacement under normal bite force by an intraoral scanner[J]. Chin J Stomatol, 2020, 55(10): 743-749 | |
26 | 曹悦, 陈俊锴, 赵一姣, 等. 口内三维扫描技术临床应用精度的研究进展[J].中华口腔医学杂志, 2020, 55(3): 201-205. |
Cao Y, Chen JK, Zhao YJ, et al. Research and deve-lopment of clinical application accuracy of intraoral three-dimensional scanning technology[J]. Chin J Sto-matol, 2020, 55(3): 201-205. | |
27 | Wu JL, Liu YF, Li BX, et al. Numerical simulation of optimal range of rotational moment for the mandibular lateral incisor, canine and first premolar based on biomechanical responses of periodontal ligaments: a case study[J]. Clin Oral Investig, 2021, 25(3): 1569-1577. |
28 | Keilig L, Goedecke J, Bourauel C, et al. Increased tooth mobility after fixed orthodontic appliance treatment can be selectively utilized for case refinement via positioner therapy-a pilot study[J]. BMC Oral Health, 2020, 20(1): 114. |
29 | Gupta M, Madhok K, Kulshrestha R, et al. Determination of stress distribution on periodontal ligament and alveolar bone by various tooth movements-a 3D FEM study[J]. J Oral Biol Craniofac Res, 2020, 10(4): 758-763. |
30 | Jiang N, Guo WH, Chen M, et al. Periodontal ligament and alveolar bone in health and adaptation: tooth movement[J]. Front Oral Biol, 2016, 18: 1-8. |
31 | Cattaneo PM, Cornelis MA. Orthodontic tooth movement studied by finite element analysis: an update. What can we learn from these simulations[J]. Curr Osteoporos Rep, 2021, 19(2): 175-181. |
32 | 卫敏捷, 郭巧玲, 刘艳梅, 等. 种植固定义齿与天然邻牙食物嵌塞的影响因素分析[J]. 中华老年口腔医学杂志, 2021, 19(1): 31-34. |
Wei MJ, Guo QL, Liu YM, et al. Analysis of influencing factors of food impaction between implant fixed denture and natural adjacent tooth[J]. Chin J Geriatr Dent, 2021, 19(1): 31-34. | |
33 | Robinson D, Aguilar L, Gatti A, et al. Load response of the natural tooth and dental implant: a comparative biomechanics study[J]. J Adv Prosthodont, 2019, 11(3): 169-178. |
34 | Dörfer CE, von Bethlenfalvy ER, Staehle HJ, et al. Factors influencing proximal dental contact strengths [J]. Eur J Oral Sci, 2000, 108(5): 368-377. |
35 | 王茂夏, 戴冠宇, 孟玉坤. 垂直型食物嵌塞的机制探究[J]. 国际口腔医学杂志, 2018, 45(2): 245-248. |
Wang MX, Dai GY, Meng YK. Mechanism of vertical food impaction[J]. Int J Stomatol, 2018, 45(2): 245-248. | |
36 | 黄敏, 罗云, 王敏. 相邻牙间的邻面接触与食物嵌塞的关系[J]. 国际口腔医学杂志, 2016, 43(3): 303-308. |
Huang M, Luo Y, Wang M. Relationship between the interproximal interface of adjacent teeth and food impaction[J]. Int J Stomatol, 2016, 43(3): 303-308. |
[1] | 黄元鸿,彭显,周学东. 骨碎补在治疗口腔骨相关疾病的研究进展[J]. 国际口腔医学杂志, 2023, 50(6): 679-685. |
[2] | 尹圆圆,马华钰,李昕怡,徐静晨,柳汀,陈嵩,何姝姝. 小鼠正畸牙移动中牙周组织自噬相关基因表达的初步研究[J]. 国际口腔医学杂志, 2020, 47(6): 627-634. |
[3] | 赵玉洁,管晓燕,李小兰,陈琦君,王倩,刘建国. 巨噬细胞极化参与正畸牙移动的研究进展[J]. 国际口腔医学杂志, 2020, 47(4): 478-483. |
[4] | 杨亚,陈鹏,戴红卫,张林. 大鼠正畸牙移动过程中转化生长因子-β/Smad信号通路相关蛋白质在Malassez上皮剩余细胞的表达变化[J]. 国际口腔医学杂志, 2019, 46(3): 270-276. |
[5] | 黄满英,付云. 牙龈生物型的测量方法[J]. 国际口腔医学杂志, 2019, 46(2): 171-176. |
[6] | 王通,万乾炳. 牙根表面积测量方法的研究进展[J]. 国际口腔医学杂志, 2016, 43(4): 490-494. |
[7] | 华小川 杨苹 周治 刘晓君. 骨钙素与低强度激光对正畸牙移动速度的影响研究[J]. 国际口腔医学杂志, 2015, 42(1): 16-18. |
[8] | 易颖煜 赵宁 沈刚. 牙周组织老龄化变化及其对正畸牙移动的影响[J]. 国际口腔医学杂志, 2014, 41(4): 492-496. |
[9] | 颜子淇1 何武林2 邹淑娟1. 低强度激光促进正畸治疗牙移动的研究进展[J]. 国际口腔医学杂志, 2014, 41(2): 169-171. |
[10] | 徐晖综述 赵青 白丁审校. 错畸形患者牙周炎症消除后的正畸治疗[J]. 国际口腔医学杂志, 2012, 39(5): 624-627. |
[11] | 包幸福综述 胡敏审校. 正畸牙移动中骨吸收机制及其调控的研究进展[J]. 国际口腔医学杂志, 2012, 39(2): 187-189. |
[12] | 彭鹏综述 蔡萍审校. 生长因子在正畸牙移动牙周组织改建中的作用[J]. 国际口腔医学杂志, 2012, 39(2): 252-256. |
[13] | 尹林玲综述 房兵审校. 牵引成骨技术在正畸牙移动中应用的研究进展[J]. 国际口腔医学杂志, 2010, 37(02): 229-229~232. |
[14] | 伍颖颖综述 宫苹审校. 种植体初期稳定性的研究现状与进展[J]. 国际口腔医学杂志, 2009, 36(6): 726-728. |
[15] | 许顼杰, 吴丽萍. 精氨酸与NG-硝基-精氨酸甲酯对大鼠正畸牙移动时诱导型一氧化氮合酶的影响[J]. 国际口腔医学杂志, 2009, 36(4): 379-382. |
|