国际口腔医学杂志 ›› 2025, Vol. 52 ›› Issue (1): 123-132.doi: 10.7518/gjkq.2025013
• 综述 • 上一篇
摘要:
水凝胶是一类易于功能化修饰及负载药物的聚合物材料,在药物递送领域已得到广泛的应用。智能响应型水凝胶相比传统水凝胶具有刺激响应性,避免了传统水凝胶的早期爆释药物现象,可响应病理情况下的微环境变化或响应外加刺激从而实现按需控释药物,是更为智能的药物递送系统。本文全面综述了pH、活性氧、化学、温度、磁、光、超声响应型水凝胶独特的响应机制以及在各类疾病治疗中药物控释的创新应用,展现了这一领域的前沿进展并指出了未来研究的发展方向。
中图分类号:
1 | Zhao Y, Song SL, Ren XZ, et al. Supramolecular adhesive hydrogels for tissue engineering applications[J]. Chem Rev, 2022, 122(6): 5604-5640. |
2 | Dimatteo R, Darling NJ, Segura T. In situ forming injectable hydrogels for drug delivery and wound repair[J]. Adv Drug Deliv Rev, 2018, 127: 167-184. |
3 | Li FY, Lyu DY, Liu S, et al. DNA hydrogels and microgels for biosensing and biomedical applications[J]. Adv Mater, 2020, 32(3): e1806538. |
4 | Thambi T, Li Y, Lee DS. Injectable hydrogels for sustained release of therapeutic agents[J]. J Control Release, 2017, 267: 57-66. |
5 | Koetting MC, Peters JT, Steichen SD, et al. Stimulus-responsive hydrogels: theory, modern advances, and applications[J]. Mater Sci Eng R Rep, 2015, 93: 1-49. |
6 | Abdollahiyan P, Baradaran B, de la Guardia M, et al. Cutting-edge progress and challenges in stimuli responsive hydrogel microenvironment for success in tissue engineering today[J]. J Control Release, 2020, 328: 514-531. |
7 | Li JY, Mooney DJ. Designing hydrogels for controlled drug delivery[J]. Nat Rev Mater, 2016, 1(12): 16071. |
8 | Zhuo SJ, Zhang F, Yu JY, et al. pH-sensitive biomaterials for drug delivery[J]. Molecules, 2020, 25(23): 5649. |
9 | Bazban-Shotorbani S, Hasani-Sadrabadi MM, Kar-khaneh A, et al. Revisiting structure-property relationship of pH-responsive polymers for drug delivery applications[J]. J Control Release, 2017, 253: 46-63. |
10 | Tao W, Wang JQ, Parak WJ, et al. Nanobuffering of pH-responsive polymers: a known but sometimes overlooked phenomenon and its biological applications[J]. ACS Nano, 2019, 13(5): 4876-4882. |
11 | Thambi T, Jung JM, Lee DS. Recent strategies to develop pH-sensitive injectable hydrogels[J]. Biomater Sci, 2023, 11(6): 1948-1961. |
12 | Wang CG, Wang M, Xu TZ, et al. Engineering bioactive self-healing antibacterial exosomes hydrogel for promoting chronic diabetic wound healing and complete skin regeneration[J]. Theranostics, 2019, 9(1): 65-76. |
13 | Liu J, Huang YR, Kumar A, et al. pH-sensitive nano-systems for drug delivery in cancer therapy[J]. Biotechnol Adv, 2014, 32(4): 693-710. |
14 | Lee JB, Shin YM, Kim WS, et al. ROS-responsive biomaterial design for medical applications[J]. Adv Exp Med Biol, 2018, 1064: 237-251. |
15 | Yao YJ, Zhang HL, Wang ZY, et al. Reactive oxygen species (ROS)-responsive biomaterials mediate tissue microenvironments and tissue regeneration[J]. J Mater Chem B, 2019, 7(33): 5019-5037. |
16 | Zhao H, Huang J, Li Y, et al. ROS-scavenging hydrogel to promote healing of bacteria infected diabetic wounds[J]. Biomaterials, 2020, 258: 120286. |
17 | Mohanty AR, Ravikumar A, Peppas NA. Recent advances in glucose-responsive insulin delivery systems: novel hydrogels and future applications[J]. Regen Biomater, 2022, 9: rbac056. |
18 | Peng HF, Ning XY, Wei G, et al. The preparations of novel cellulose/phenylboronic acid composite intelligent bio-hydrogel and its glucose, pH-responsive behaviors[J]. Carbohydr Polym, 2018, 195: 349-355. |
19 | Sobczak M. Enzyme-responsive hydrogels as potential drug delivery systems-state of knowledge and future prospects[J]. Int J Mol Sci, 2022, 23(8): 4421. |
20 | Xiang YH, Xian SJ, Ollier RC, et al. Diboronate crosslinking: introducing glucose specificity in glucose-responsive dynamic-covalent networks[J]. J Control Release, 2022, 348: 601-611. |
21 | Yang JX, Zeng WN, Xu P, et al. Glucose-responsive multifunctional metal-organic drug-loaded hydrogel for diabetic wound healing[J]. Acta Biomater, 2022, 140: 206-218. |
22 | Fan CX, Yang W, Zhang LL, et al. Restoration of spinal cord biophysical microenvironment for enhancing tissue repair by injury-responsive smart hydrogel[J]. Biomaterials, 2022, 288: 121689. |
23 | Purcell BP, Lobb D, Charati MB, et al. Injectable and bioresponsive hydrogels for on-demand matrix metalloproteinase inhibition[J]. Nat Mater, 2014, 13(6): 653-661. |
24 | Maitz MF, Freudenberg U, Tsurkan MV, et al. Bio-responsive polymer hydrogels homeostatically regulate blood coagulation[J]. Nat Commun, 2013, 4: 2168. |
25 | Lyu DY, Chen SS, Guo WW. Liposome crosslinked polyacrylamide/DNA hydrogel: a smart controlled-release system for small molecular payloads[J]. Small, 2018, 14(15): e1704039. |
26 | Chatterjee S, Hui PCL. Review of applications and future prospects of stimuli-responsive hydrogel based on thermo-responsive biopolymers in drug delivery systems[J]. Polymers (Basel), 2021, 13(13): 2086. |
27 | Loh XJ, Peh P, Liao SS, et al. Controlled drug release from biodegradable thermoresponsive physical hydrogel nanofibers[J]. J Control Release, 2010, 143(2): 175-182. |
28 | Pardeshi S, Damiri F, Zehravi M, et al. Functional thermoresponsive hydrogel molecule to material design for biomedical applications[J]. Polymers, 2022, 14(15): 3126. |
29 | Wu HA, Song LN, Chen L, et al. Injectable magne-tic supramolecular hydrogel with magnetocaloric liquid-conformal property prevents post-operative recurrence in a breast cancer model[J]. Acta Biomater, 2018, 74: 302-311. |
30 | Zhi D, Yang T, O’Hagan J, et al. Photothermal therapy[J]. J Control Release, 2020, 325: 52-71. |
31 | Auerbach M, Chertow GM, Rosner M. Ferumoxytol for the treatment of iron deficiency anemia[J]. Expert Rev Hematol, 2018, 11(10): 829-834. |
32 | Fragal EH, Fragal VH, Silva EP, et al. Magnetic-responsive polysaccharide hydrogels as smart biomaterials: synthesis, properties, and biomedical applications[J]. Carbohydr Polym, 2022, 292: 119665. |
33 | Qin J, Asempah I, Laurent S, et al. Injectable superparamagnetic ferrogels for controlled release of hydrophobic drugs[J]. Adv Mater, 2009, 21(13): 1354-1357. |
34 | Rizzo F, Kehr NS. Recent advances in injectable hydrogels for controlled and local drug delivery[J]. Adv Healthc Mater, 2021, 10(1): e2001341. |
35 | Ji WH, Wu Q, Han XS, et al. Photosensitive hydrogels: from structure, mechanisms, design to bioapplications[J]. Sci China Life Sci, 2020, 63(12): 1813-1828. |
36 | Zhao WY, Li Y, Zhang X, et al. Photo-responsive supramolecular hyaluronic acid hydrogels for accele-rated wound healing[J]. J Control Release, 2020, 323: 24-35. |
37 | Li C, Iscen A, Palmer LC, et al. Light-driven expansion of spiropyran hydrogels[J]. J Am Chem Soc, 2020, 142(18): 8447-8453. |
38 | Xing YH, Zeng BH, Yang W. Light responsive hydrogels for controlled drug delivery[J]. Front Bioeng Biotechnol, 2022, 10: 1075670. |
39 | Zhao DL, Tang Q, Zhou Q, et al. A photo-degradable injectable self-healing hydrogel based on star poly(ethylene glycol)‑b-polypeptide as a potential pharmaceuticals delivery carrier[J]. Soft Matter, 2018, 14(36): 7420-7428. |
40 | Azagarsamy MA, Anseth KS. Wavelength-contro-lled photocleavage for the orthogonal and sequential release of multiple proteins[J]. Angew Chem Int Ed, 2013, 52(51): 13803-13807. |
41 | Li L, Scheiger JM, Levkin PA. Design and applications of photoresponsive hydrogels[J]. Adv Mater, 2019, 31(26): e1807333. |
42 | Maleki A, He JH, Bochani S, et al. Multifunctional photoactive hydrogels for wound healing acceleration[J]. ACS Nano, 2021, 15(12): 18895-18930. |
43 | Kim D, Choi E, Lee C, et al. Highly sensitive and selective visual detection of Cr(VI) ions based on etching of silver-coated gold nanorods[J]. Nano Converg, 2019, 6(1): 34. |
44 | Qiu M, Wang D, Liang WY, et al. Novel concept of the smart NIR-light-controlled drug release of black phosphorus nanostructure for cancer therapy[J]. Proc Natl Acad Sci U S A, 2018, 115(3): 501-506. |
45 | Athanassiadis AG, Ma ZC, Moreno-Gomez N, et al. Ultrasound-responsive systems as components for smart materials[J]. Chem Rev, 2022, 122(5): 5165-5208. |
46 | Yeingst TJ, Arrizabalaga JH, Hayes DJ. Ultrasound-induced drug release from stimuli-responsive hydrogels[J]. Gels, 2022, 8(9): 554. |
47 | Rapoport NY, Kennedy AM, Shea JE, et al. Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles[J]. J Control Release, 2009, 138(3): 268-276. |
48 | Frohly J, Labouret S, Bruneel C, et al. Ultrasonic cavitation monitoring by acoustic noise power measurement[J]. J Acoust Soc Am, 2000, 108(5 Pt 1): 2012-2020. |
49 | Kaczmarek K, Hornowski T, Kubovčíková M, et al. Heating induced by therapeutic ultrasound in the presence of magnetic nanoparticles[J]. ACS Appl Mater Interfaces, 2018, 10(14): 11554-11564. |
50 | Huo SD, Liao ZH, Zhao PK, et al. Mechano-nanoswitches for ultrasound-controlled drug activation[J]. Adv Sci, 2022, 9(12): e2104696. |
51 | Liu HL, Yang HW, Hua MY, et al. Enhanced therapeutic agent delivery through magnetic resonance imaging-monitored focused ultrasound blood-brain barrier disruption for brain tumor treatment: an overview of the current preclinical status[J]. Neurosurg Focus, 2012, 32(1): E4. |
52 | Phenix CP, Togtema M, Pichardo S, et al. High intensity focused ultrasound technology, its scope and applications in therapy and drug delivery[J]. J Pharm Pharm Sci, 2014, 17(1): 136-153. |
53 | Slots J. Periodontitis: facts, fallacies and the future[J]. Periodontol 2000, 2017, 75(1): 7-23. |
54 | Wang YX, Li JX, Tang MM, et al. Smart stimuli-responsive hydrogels for drug delivery in periodontitis treatment[J]. Biomedecine Pharmacother, 2023, 162: 114688. |
55 | Zhang LL, Wang YL, Wang C, et al. Light-activable on-demand release of nano-antibiotic platforms for precise synergy of thermochemotherapy on perio-dontitis[J]. ACS Appl Mater Interfaces, 2020, 12(3): 3354-3362. |
56 | Gan ZQ, Xiao ZC, Zhang Z, et al. Stiffness-tuned and ROS-sensitive hydrogel incorporating complement C5a receptor antagonist modulates antibacte-rial activity of macrophages for periodontitis treatment[J]. Bioact Mater, 2023, 25: 347-359. |
57 | Guo J, Sun H, Lei W, et al. MMP-8-responsive polyethylene glycol hydrogel for intraoral drug delivery[J]. J Dent Res, 2019, 98(5): 564-571. |
58 | Liu SY, Wang YN, Ma BJ, et al. Gingipain-responsive thermosensitive hydrogel loaded with SDF-1 facilitates in situ periodontal tissue regeneration[J]. ACS Appl Mater Interfaces, 2021, 13(31): 36880-36893. |
59 | Bickel M, Cimasoni G. The pH of human crevicular fluid measured by a new microanalytical technique[J]. J Periodontal Res, 1985, 20(1): 35-40. |
60 | Zhao R, Yang RJ, Cooper PR, et al. Bone grafts and substitutes in dentistry: a review of current trends and developments[J]. Molecules, 2021, 26(10): 3007. |
61 | Li Z, Wang HX, Zhang KY, et al. Bisphosphonate-based hydrogel mediates biomimetic negative feedback regulation of osteoclastic activity to promote bone regeneration[J]. Bioact Mater, 2022, 13: 9-22. |
62 | Li DZ, Chen KW, Tang H, et al. A logic-based diagnostic and therapeutic hydrogel with multistimuli responsiveness to orchestrate diabetic bone regeneration[J]. Adv Mater, 2022, 34(11): e2108430. |
63 | Wan ZQ, Dong QY, Guo XD, et al. A dual-responsive polydopamine-modified hydroxybutyl chitosan hydrogel for sequential regulation of bone regeneration[J]. Carbohydr Polym, 2022, 297: 120027. |
64 | Zhao YW, Ran B, Xie X, et al. Developments on the smart hydrogel-based drug delivery system for oral tumor therapy[J]. Gels, 2022, 8(11): 741. |
65 | Liu H, Deng ZW, Li TH, et al. Fabrication, GSH-responsive drug release, and anticancer properties of thioctic acid-based intelligent hydrogels[J]. Colloids Surf B Biointerfaces, 2022, 217: 112703. |
66 | Zhang W, Jin X, Li H, et al. Injectable and body temperature sensitive hydrogels based on chitosan and hyaluronic acid for pH sensitive drug release[J]. Carbohydr Polym, 2018, 186: 82-90. |
67 | Ghazi N, Saghravanian N, Taghi Shakeri M, et al. Evaluation of CD44 and TGF-B expression in oral carcinogenesis[J]. J Dent, 2021, 22(1): 33-40. |
68 | Reyes-Martínez JE, Ruiz-Pacheco JA, Flores-Valdéz MA, et al. Advanced hydrogels for treatment of diabetes[J]. J Tissue Eng Regen Med, 2019, 13(8): 1375-1393. |
69 | Stan D, Tanase C, Avram M, et al. Wound healing applications of creams and “smart” hydrogels[J]. Exp Dermatol, 2021, 30(9): 1218-1232. |
70 | Li JY, Feng YH, He YT, et al. Thermosensitive hydrogel microneedles for controlled transdermal drug delivery[J]. Acta Biomater, 2022, 153: 308-319. |
71 | Chen SY, Matsumoto H, Moro-Oka Y, et al. Smart microneedle fabricated with silk fibroin combined semi-interpenetrating network hydrogel for glucose-responsive insulin delivery[J]. ACS Biomater Sci Eng, 2019, 5(11): 5781-5789. |
72 | Liu W, Wang XG, Zhou DY, et al. A Dioscorea opposita thunb polysaccharide-based dual-responsive hydrogel for insulin controlled release[J]. Int J Mol Sci, 2022, 23(16): 9081. |
73 | Lim JZM, Ng NSL, Thomas C. Prevention and treatment of diabetic foot ulcers[J]. J R Soc Med, 2017, 110(3): 104-109. |
74 | Liang YP, Li M, Yang YT, et al. pH/glucose dual responsive metformin release hydrogel dressings with adhesion and self-healing via dual-dynamic bonding for athletic diabetic foot wound healing[J]. ACS Nano, 2022, 16(2): 3194-3207. |
75 | Wang Y, Wu Y, Long LY, et al. Inflammation-responsive drug-loaded hydrogels with sequential hemostasis, antibacterial, and anti-inflammatory behavior for chronically infected diabetic wound treatment[J]. ACS Appl Mater Interfaces, 2021, 13(28): 33584-33599. |
[1] | 温星悦, 赵骏宇, 赵崇钧, 王贵欣, 黄睿洁. 壳聚糖治疗牙周病的研究进展[J]. 国际口腔医学杂志, 2024, 51(4): 416-424. |
[2] | 陈润智,张文涛,陈枫,杨帆. 丝素蛋白水凝胶的改性方法及其在骨组织工程中的应用[J]. 国际口腔医学杂志, 2023, 50(6): 739-746. |
[3] | 梁屹,裴锡波,万乾炳. 光响应水凝胶在生物医学领域应用的研究进展[J]. 国际口腔医学杂志, 2022, 49(1): 12-18. |
[4] | 曹春玲,韩冰,王晓燕. 水凝胶用于牙髓再生的研究进展[J]. 国际口腔医学杂志, 2021, 48(2): 192-197. |
[5] | 姚洋1 班兆阳1综述 宫苹2审校. 可注射智能壳聚糖水凝胶的研究进展[J]. 国际口腔医学杂志, 2011, 38(5): 554-558. |
|