国际口腔医学杂志 ›› 2025, Vol. 52 ›› Issue (2): 195-204.doi: 10.7518/gjkq.2025008

• 论著 • 上一篇    下一篇

转铁蛋白修饰的姜黄素脂质体对口腔鳞状细胞癌细胞株HN4增殖抑制机制的研究

魏雪琴(),巴凯   

  1. 郑州大学第一附属医院口腔医学中心 郑州 450052
  • 收稿日期:2024-03-09 修回日期:2024-07-24 出版日期:2025-03-01 发布日期:2025-03-01
  • 通讯作者: 魏雪琴
  • 作者简介:魏雪琴,副主任医师,博士,Email:dentistwendy@qq.com
  • 基金资助:
    河南省医学科技攻关计划软科学项目及联合共建项目(LHGJ20220361);河南省科技攻关项目(232102310491)

Mechanism of transferrin-modified liposomal curcumin on proliferation inhibition of oral squamous cell carcinoma

Xueqin Wei(),Kai Ba   

  1. Dept. of Stomatology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
  • Received:2024-03-09 Revised:2024-07-24 Online:2025-03-01 Published:2025-03-01
  • Contact: Xueqin Wei
  • Supported by:
    Soft Science Project and Joint Construction Project of Henan Medical Science and Technology Research Plan(LHGJ20220361);Henan Province Science and Technology Research Project(232102310491)

摘要:

目的 研究转铁蛋白(Tf)修饰的姜黄素(Cur)脂质体(Lips)对口腔鳞状细胞癌细胞株HN4的影响。 方法 制备Cur-Lips以及Tf-Cur-Lips;通过Cur体外释放实验以及大鼠体内药物代谢动力学实验,考察Cur-Lips及Tf-Cur-Lips对Cur体内外代谢的调节作用;用不同浓度的Cur、Cur-Lips及Tf-Cur-Lips溶液处理HN4细胞后,采用细胞计数试剂-8实验检测不同实验组对HN4细胞增殖的影响;实时荧光定量聚合酶链式反应技术检测凋亡相关基因P53和Fas表达水平变化,以探讨Tf修饰对Cur-Lips抑制HN4细胞增殖和凋亡的分子机制。 结果 与Cur相比,Cur-Lips显著延长了Cur的代谢时间;Tf-Cur-Lips能进一步提高Cur的稳定性,延长Cur的代谢时间。与Cur及Cur-Lips相比,Tf-Cur-Lips能显著增强Cur对HN4细胞的增殖抑制,并上调凋亡相关基因P53和Fas的表达。 结论 Tf-Cur-Lips相比于Cur和Cur-Lips,具有更强的抑制口腔鳞状细胞癌细胞株HN4增殖的作用。

关键词: 姜黄素, 脂质体, 转铁蛋白, HN4细胞, 细胞凋亡

Abstract:

Objective This study aimed to investigate the effect of transferrin (Tf)-modified curcumin (Cur)-loaded liposomes (Lips) on the oral squamous cell carcinoma cell line HN4. Methods Cur-Lips and Tf-Cur-Lips were prepared, and their regulatory effects on the internal and external disposal of curcumin were investigated during Cur release in vitro and pharmacokinetics in vivo in rats. Then, HN4 cells were treated with Cur, Cur-Lips, and Tf-Cur-Lips at different concentrations successively, and cell counting kit-8 was used to detect the effects of different experimental groups on HN4 cell proliferation. Finally, the expression levels of apoptosis-related genes P53 and Fas and the molecular mechanism of transferrin modification on Cur-Lips inhibiting the proliferation and apoptosis of HN4 cells were investigated through real-time fluorescence quantitative polymerase chain reaction. Results Compared with Cur, Cur-Lips considerably prolonged metabolic time, and transferrin modification further improved the stability of Cur and prolonged the metabolic time of Cur-Lips. Compared with Cur and Cur-Lips, Tf-Cur-Lips markedly enhanced the inhibitory effect on the HN4 cell proliferation and up-regulated the expression of P53 and Fas. Conclusion Tf-Cur-Lips have a stronger inhibitory effect on oral squamous cell carcinoma cell HN4 than Cur and Cur-Lips.

Key words: curcumin, liposomes, transferrin, HN4 cells, cell apoptosis

中图分类号: 

  • R780.1

表 1

基因引物序列表"

基因引物序列(5’-3’)
GAPDH上游:GACGGCCGCATCTTCTTGTGC
下游:TGCAAATGGCAGCCCTGGTGA
P53上游:CTTTGAGGTGCGTGTTT
下游:CAGTGCTCGCTTAGTGC
Fas上游:GTGATGAAGGGCATGGTTTAG
下游:GCATTTGGTGTTGCTGGTT

表 2

Cur-Lips及Tf-Cur-Lips的粒径和表面电位"

组别粒径/nm分散系数表面电位/mV
Cur-Lips183.0±2.80.19±0.03-28.8±0.3
Tf-Cur-Lips194.0±2.1*0.20±0.05-29.3±0.5

图 1

粒径和电位分布图A:Cur-Lips典型粒径图;B:Tf-Cur-Lips典型粒径图;C:Cur-Lips电位分布图;D:Tf-Cur-Lips电位分布图。"

图 2

扫描电子显微镜照片A:Cur-Lips;B:Tf-Cur-Lips;比例尺:1 μm。"

图 3

Cur体外累积释放率A:Cur;B:Cur-Lips和Tf-Cur-Lips;*:P<0.05。"

图 4

4种浓度下Cur、Cur-Lips及Tf-Cur-Lips对HN4细胞增殖的抑制作用A:处理1 d;B:处理3 d;*:P<0.05。"

图 5

Cur、Cur-Lips及Tf-Cur-Lips对HN4的P53和Fas基因表达的影响*:P<0.05。"

图6

大鼠体内的药物代谢动力学特征图A:Cur;B:Cur-Lips和Tf-Cur-Lips;*:P<0.05。"

1 Almeida TC, da Silva GN, de Souza DV, et al. Resveratrol effects in oral cancer cells: a comprehensive review[J]. Med Oncol, 2021, 38(8): 97.
2 Panarese I, Aquino G, Ronchi A, et al. Oral and oropharyngeal squamous cell carcinoma: prognostic and predictive parameters in the etiopathogenetic route[J]. Expert Rev Anticancer Ther, 2019, 19(2): 105-119.
3 王太萍, 石兴莲, 李喆臻, 等. 口腔癌患者心理因素及干预现状分析[J]. 国际口腔医学杂志, 2023, 50(2): 203-209.
Wang TP, Shi XL, Li ZZ, et al. Analysis of psychological factors and intervention in patients with oral cancer[J]. Int J Stomatol, 2023, 50(2): 203-209.
4 Hasmat S, Ebrahimi A, Luk PP, et al. Positive survival trend in metastatic head and neck cutaneous squamous cell carcinoma over four-decades: multicenter study[J]. Head Neck, 2019, 41(11): 3826-3832.
5 Togni L, Mascitti M, Vignigni A, et al. Treatment-related dysgeusia in oral and oropharyngeal cancer: a comprehensive review[J]. Nutrients, 2021, 13(10): 3325.
6 聂思垚, 聂会军, 程兰, 等. 姜黄素的化学成分分析及药理作用研究进展[J]. 特产研究, 2023, 45(2): 169-174.
Nie SY, Nie HJ, Cheng L, et al. Reaearch progress on the chemical composition analysis and pharmacological effects of curcumin[J]. Spec Wild Econ A-nim Plant Res, 2023, 45(2): 169-174.
7 Zoi V, Galani V, Lianos GD, et al. The role of curcumin in cancer treatment[J]. Biomedicines, 2021, 9(9): 1086.
8 Maulina T, Hadikrishna I, Hardianto A, et al. The therapeutic activity of curcumin through its anti-cancer potential on oral squamous cell carcinoma: a study on Sprague Dawley rat[J]. SAGE Open Med, 2019, 7: 2050312119875982.
9 Siddappa G, Kulsum S, Ravindra DR, et al. Curcu-min and metformin-mediated chemoprevention of oral cancer is associated with inhibition of cancer stem cells[J]. Mol Carcinog, 2017, 56(11): 2446-2460.
10 Vallée A, Lecarpentier Y, Vallée JN. Curcumin: a therapeutic strategy in cancers by inhibiting the canonical WNT/β-catenin pathway[J]. J Exp Clin Cancer Res, 2019, 38(1): 323.
11 Calibasi-Kocal G, Pakdemirli A, Bayrak S, et al. Curcumin effects on cell proliferation, angiogenesis and metastasis in colorectal cancer[J]. J BUON, 2019, 24(4): 1482-1487.
12 Kumar A, Harsha C, Parama D, et al. Current clinical developments in curcumin-based therapeutics for cancer and chronic diseases[J]. Phytother Res, 2021, 35(12): 6768-6801.
13 Hatamipour M, Ramezani M, Tabassi SAS, et al. Demethoxycurcumin: a naturally occurring curcu-min analogue with antitumor properties[J]. J Cell Physiol, 2018, 233(12): 9247-9260.
14 Morshedi K, Borran S, Ebrahimi MS, et al. Therapeutic effect of curcumin in gastrointestinal cancers: a comprehensive review[J]. Phytother Res, 2021, 35(9): 4834-4897.
15 Mirzaei H, Shakeri A, Rashidi B, et al. Phytosomal curcumin: a review of pharmacokinetic, experimental and clinical studies[J]. Biomed Pharm, 2017, 85: 102-112.
16 Aqil F, Munagala R, Jeyabalan J, et al. Exosomes for the enhanced tissue bioavailability and efficacy of curcumin[J]. AAPS J, 2017, 19(6): 1691-1702.
17 Crommelin DJA, van Hoogevest P, Storm G. The role of liposomes in clinical nanomedicine development. What now? Now what[J]. J Control Release, 2020, 318: 256-263.
18 He HS, Lu Y, Qi JP, et al. Adapting liposomes for oral drug delivery[J]. Acta Pharm Sin B, 2019, 9(1): 36-48.
19 Shao XR, Wei XQ, Zhang S, et al. Effects of micro-environmental pH of liposome on chemical stability of loaded drug[J]. Nanoscale Res Lett, 2017, 12(1): 504.
20 Jiang LM, Ayre WN, Melling GE, et al. Liposomes loaded with transforming growth factor β1 promote odontogenic differentiation of dental pulp stem cells[J]. J Dent, 2020, 103: 103501.
21 Feng T, Wei YM, Lee RJ, et al. Liposomal curcumin and its application in cancer[J]. Int J Nanomedicine, 2017, 12: 6027-6044.
22 La Barbera G, Capriotti AL, Caracciolo G, et al. A comprehensive analysis of liposomal biomolecular corona upon human plasma incubation: the evolution towards the lipid corona[J]. Talanta, 2020, 209: 120487.
23 Heger Z, Polanska H, Merlos Rodrigo MA, et al. Prostate tumor attenuation in the nu/nu murine mo-del due to anti-sarcosine antibodies in folate-targeted liposomes[J]. Sci Rep, 2016, 6: 33379.
24 Hewlings S, Kalman D. Curcumin: a review of its effects on human health[J]. Foods, 2017, 6(10): 92.
25 任玉国, 张凤梅, 王敏, 等. 联氨基姜黄素脂质体纳米颗粒对乳腺癌细胞增殖、凋亡、侵袭和迁移的影响[J]. 现代肿瘤医学, 2016, 24(1): 16-18.
Ren YG, Zhang FM, Wang M, et al. Curcumin affects-hydrazino liposomal nanoparticles on breast cancer cell proliferation, apoptosis, invasion and migration[J]. J Mod Oncol, 2016, 24(1): 16-18.
26 Zhao M, Zhao MN, Fu C, et al. Targeted therapy of intracranial glioma model mice with curcumin nanoliposomes[J]. Int J Nanomedicine, 2018, 13: 1601-1610.
27 Xu HZ, Gong Z, Zhou SY, et al. Liposomal curcu-min targeting endometrial cancer through the NF‑κB pathway[J]. Cell Physiol Biochem, 2018, 48(2): 569-582.
28 AlSawaftah NM, Awad NS, Paul V, et al. Transferrin-modified liposomes triggered with ultrasound to treat HeLa cells[J]. Sci Rep, 2021, 11(1): 11589.
29 Kawabata H. Transferrin and transferrin receptors update[J]. Free Radic Biol Med, 2019, 133: 46-54.
30 Shen Y, Li X, Dong DD, et al. Transferrin receptor 1 in cancer: a new sight for cancer therapy[J]. Am J Cancer Res, 2018, 8(6): 916-931.
31 Shirakihara T, Yamaguchi H, Kondo T, et al. Transferrin receptor 1 promotes the fibroblast growth factor receptor-mediated oncogenic potential of diffused-type gastric cancer[J]. Oncogene, 2022, 41(18): 2587-2596.
32 Candelaria PV, Leoh LS, Penichet ML, et al. Antibodies targeting the transferrin receptor 1 (TfR1) as direct anti-cancer agents[J]. Front Immunol, 2021, 12: 607692.
33 Wang KK, Yuan AH, Yu JQ, et al. One-step self-assembling method to prepare dual-functional transferrin nanoparticles for antitumor drug delivery[J]. J Pharm Sci, 2016, 105(3): 1269-1276.
34 Choudhury H, Pandey M, Chin PX, et al. Transferrin receptors-targeting nanocarriers for efficient targeted delivery and transcytosis of drugs into the brain tumors: a review of recent advancements and emerging trends[J]. Drug Deliv Transl Res, 2018, 8(5): 1545-1563.
35 Wang YY, Yang YN, Yu YB, et al. Transferrin modified dioscin loaded PEGylated liposomes: characteri-zation and in vitro antitumor effect[J]. J Nanosci Nanotechnol, 2020, 20(3): 1321-1331.
36 Zhao XL, Yang YF, Su XR, et al. Transferrin-modified triptolide liposome targeting enhances anti-hepatocellular carcinoma effects[J]. Biomedicines, 2023, 11(10): 2869.
37 Deshpande P, Jhaveri A, Pattni B, et al. Transferrin and octaarginine modified dual-functional liposomes with improved cancer cell targeting and enhanced intracellular delivery for the treatment of ovarian cancer[J]. Drug Deliv, 2018, 25(1): 517-532.
38 Wei XQ, Zhu JF, Wang XB, et al. Improving the stability of liposomal curcumin by adjusting the inner aqueous chamber pH of liposomes[J]. ACS Omega, 2020, 5(2): 1120-1126.
39 Kong L, Li XT, Ni YN, et al. Transferrin-modified osthole PEGylated liposomes travel the blood-brain barrier and mitigate Alzheimer’s disease-related pathology in APP/PS-1 mice[J]. Int J Nanomedicine, 2020, 15: 2841-2858.
40 Andrade S, Pereira MC, Loureiro JA. Caffeic acid loaded into engineered lipid nanoparticles for Alzheimer’s disease therapy[J]. Colloids Surf B Biointerfaces, 2023, 225: 113270.
41 Peng Q, Wei XQ, Yang Q, et al. Enhanced biostability of nanoparticle-based drug delivery systems by albumin corona[J]. Nanomedicine (Lond), 2015, 10(2): 205-214.
42 Sambrook J, Russell DW. Molecular cloning: a laboratory manual[M]. 3rd ed. New York: Cold Spring Harbor Laboratory Press, 2001.
43 赵茜茜, 王英豪, 肖志勇, 等. 姜黄素-胡椒碱共载脂质体的制备及其体外抗肿瘤活性评价[J]. 中国医药工业杂志, 2023, 54(2): 230-236.
Zhao QQ, Wang YH, Xiao ZY, et al. Preparation and evaluation of in vitro antitumor activity of curcumin and piperine co-loaded liposomes[J]. Chin J Pharm, 2023, 54(2): 230-236.
44 尹芳, 王帅, 郝越, 等. 姜黄素的药理学作用及其机制的研究进展[J]. 河北联合大学学报(医学版), 2013, 15(6): 798-799.
Yin F, Wang S, Hao Y, et al. Research progress on pharmacological action and mechanism of curcumin[J]. J Hebei Unit Univers (Health Sci), 2013, 15(6): 798-799.
45 刘颖慧. 姜黄素脂质体的制备及其体内外抗菌活性的研究[D]. 沈阳: 沈阳农业大学, 2020.
Liu YH. Preparation of curcumin liposomes and stu-dy of its antibacterial activity in vivo and in vitro [D]. Shenyang: Shenyang Agricultural University, 2020.
46 Peng Q, Zhang ZR, Gong T, et al. A rapid-acting, long-acting insulin formulation based on a phospholipid complex loaded PHBHHx nanoparticles[J]. Biomaterials, 2012, 33(5): 1583-1588.
47 Mary SJ, Veeravarmal V, Tharmasahayam IJ, et al. In vitro evaluation of cytotoxic effects of methanolic leaf extracts of Annona muricata on oral squamous cell carcinoma-15 cell lines and its effect on expression of Bcl 2-associated X protein, B-cell C/lymphoma 2 and p53 genes[J]. Contemp Clin Dent, 2023, 14(3): 227-231.
48 Li M, Sun D, Song N, et al. Mutant p53 in head and neck squamous cell carcinoma: molecular mechanism of gain-of-function and targeting therapy (review)[J]. Oncol Rep, 2023, 50(3): 162.
49 Malhotra L, Sharma S, Hariprasad G, et al. Mechanism of apoptosis activation by Curcumin rescued mutant p53Y220C in human pancreatic cancer[J]. Biochim Biophys Acta Mol Cell Res, 2022, 1869(12): 119343.
[1] 古丽其合热·阿布来提,秦旭,朱光勋. 线粒体自噬在牙周炎发生发展过程中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 68-73.
[2] 陈秀春, 张志民, 洪丽华, 张雅琪, 郑鹏, 李文月. 双甲基丙烯酸二缩三乙二醇酯细胞毒性的研究进展[J]. 国际口腔医学杂志, 2018, 45(2): 209-213.
[3] 朱玉婷 刘江峰 李晓星 杨会肖 黄江勇 于淼 陈秉勋 李艳利. 脂多糖上调人牙髓细胞B细胞淋巴瘤-2蛋白及其相关X蛋白的表达[J]. 国际口腔医学杂志, 2015, 42(4): 391-394.
[4] 蔡洁明综述 王茜审校. 脂质体在医学中应用的新进展[J]. 国际口腔医学杂志, 2009, 36(6): 698-700.
[5] 严超然,李龙江. 肿瘤靶向药物载体系统的研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): -.
[6] 刘昌勇1,李正1,李小玉2,刘豫蓉2,胡火珍1. 乙肝病毒X 蛋白诱导细胞凋亡的研究[J]. 国际口腔医学杂志, 2008, 35(5): 491-491~493,605.
[7] 张迪亚, 李盛来综述 陈莉丽审校. 伴放线放线杆菌与牙周病相关细胞凋亡关系的研究[J]. 国际口腔医学杂志, 2007, 34(02): 94-96.
[8] 律娜,夏娟,程斌,. 粘着斑激酶与口腔肿瘤的发生发展[J]. 国际口腔医学杂志, 2006, 33(05): 393-395.
[9] 许艳华,徐芸,罗颂椒. 细胞凋亡在颞下颌关节中的研究进展[J]. 国际口腔医学杂志, 2005, 32(03): 181-183.
[10] 王晓峰,陈英新,高文信. p33/ING1及其与口腔鳞癌的关系[J]. 国际口腔医学杂志, 2005, 32(03): 212-213.
[11] 孙红英,周国民. 核转录因子-κB与口腔扁平苔藓[J]. 国际口腔医学杂志, 2005, 32(02): 104-106.
[12] 廖明庭,张志光. 软骨细胞凋亡及其对颞下颌关节的生理、病理作用[J]. 国际口腔医学杂志, 2004, 31(01): 33-35.
[13] 许国雄,陈伟良. 环氧合酶-2及其抑制剂与头颈肿瘤的关系[J]. 国际口腔医学杂志, 2004, 31(01): 23-25.
[14] 江凌勇 赵志河. 细胞凋亡与正畸牙移动骨改建[J]. 国际口腔医学杂志, 2003, 30(06): 447-449.
[15] 莫珩 高文信. 核转录因子NF-κB与口腔鳞癌关系的研究进展[J]. 国际口腔医学杂志, 2003, 30(04): 272-274.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张京剧. 青年期至中年期颅面复合体变化的头影测量研究[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 王昆润. 在种植体上制作固定义齿以后下颌骨密度的动态变化[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 王昆润. 修补颌骨缺损的新型生物学相容材料[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 陆加梅. 不可复性关节盘移位患者术前张口度与关节镜术后疗效的相关性[J]. 国际口腔医学杂志, 1999, 26(06): .
[5] 王昆润. 二甲亚砜和双氯芬酸并用治疗根尖周炎[J]. 国际口腔医学杂志, 1999, 26(06): .
[6] 王昆润. 咀嚼口香糖对牙周组织微循环的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[7] 宋红. 青少年牙周炎外周血分叶核粒细胞的趋化功能[J]. 国际口腔医学杂志, 1999, 26(06): .
[8] 张新春. 桩冠修复与无髓牙的保护[J]. 国际口腔医学杂志, 1999, 26(06): .
[9] 王昆润. 长期单侧鼻呼吸对头颅发育有不利影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[10] 侯锐. 正畸患者釉白斑损害的纵向激光荧光研究[J]. 国际口腔医学杂志, 1999, 26(05): .