国际口腔医学杂志 ›› 2025, Vol. 52 ›› Issue (2): 195-204.doi: 10.7518/gjkq.2025008
摘要:
目的 研究转铁蛋白(Tf)修饰的姜黄素(Cur)脂质体(Lips)对口腔鳞状细胞癌细胞株HN4的影响。 方法 制备Cur-Lips以及Tf-Cur-Lips;通过Cur体外释放实验以及大鼠体内药物代谢动力学实验,考察Cur-Lips及Tf-Cur-Lips对Cur体内外代谢的调节作用;用不同浓度的Cur、Cur-Lips及Tf-Cur-Lips溶液处理HN4细胞后,采用细胞计数试剂-8实验检测不同实验组对HN4细胞增殖的影响;实时荧光定量聚合酶链式反应技术检测凋亡相关基因P53和Fas表达水平变化,以探讨Tf修饰对Cur-Lips抑制HN4细胞增殖和凋亡的分子机制。 结果 与Cur相比,Cur-Lips显著延长了Cur的代谢时间;Tf-Cur-Lips能进一步提高Cur的稳定性,延长Cur的代谢时间。与Cur及Cur-Lips相比,Tf-Cur-Lips能显著增强Cur对HN4细胞的增殖抑制,并上调凋亡相关基因P53和Fas的表达。 结论 Tf-Cur-Lips相比于Cur和Cur-Lips,具有更强的抑制口腔鳞状细胞癌细胞株HN4增殖的作用。
中图分类号:
1 | Almeida TC, da Silva GN, de Souza DV, et al. Resveratrol effects in oral cancer cells: a comprehensive review[J]. Med Oncol, 2021, 38(8): 97. |
2 | Panarese I, Aquino G, Ronchi A, et al. Oral and oropharyngeal squamous cell carcinoma: prognostic and predictive parameters in the etiopathogenetic route[J]. Expert Rev Anticancer Ther, 2019, 19(2): 105-119. |
3 | 王太萍, 石兴莲, 李喆臻, 等. 口腔癌患者心理因素及干预现状分析[J]. 国际口腔医学杂志, 2023, 50(2): 203-209. |
Wang TP, Shi XL, Li ZZ, et al. Analysis of psychological factors and intervention in patients with oral cancer[J]. Int J Stomatol, 2023, 50(2): 203-209. | |
4 | Hasmat S, Ebrahimi A, Luk PP, et al. Positive survival trend in metastatic head and neck cutaneous squamous cell carcinoma over four-decades: multicenter study[J]. Head Neck, 2019, 41(11): 3826-3832. |
5 | Togni L, Mascitti M, Vignigni A, et al. Treatment-related dysgeusia in oral and oropharyngeal cancer: a comprehensive review[J]. Nutrients, 2021, 13(10): 3325. |
6 | 聂思垚, 聂会军, 程兰, 等. 姜黄素的化学成分分析及药理作用研究进展[J]. 特产研究, 2023, 45(2): 169-174. |
Nie SY, Nie HJ, Cheng L, et al. Reaearch progress on the chemical composition analysis and pharmacological effects of curcumin[J]. Spec Wild Econ A-nim Plant Res, 2023, 45(2): 169-174. | |
7 | Zoi V, Galani V, Lianos GD, et al. The role of curcumin in cancer treatment[J]. Biomedicines, 2021, 9(9): 1086. |
8 | Maulina T, Hadikrishna I, Hardianto A, et al. The therapeutic activity of curcumin through its anti-cancer potential on oral squamous cell carcinoma: a study on Sprague Dawley rat[J]. SAGE Open Med, 2019, 7: 2050312119875982. |
9 | Siddappa G, Kulsum S, Ravindra DR, et al. Curcu-min and metformin-mediated chemoprevention of oral cancer is associated with inhibition of cancer stem cells[J]. Mol Carcinog, 2017, 56(11): 2446-2460. |
10 | Vallée A, Lecarpentier Y, Vallée JN. Curcumin: a therapeutic strategy in cancers by inhibiting the canonical WNT/β-catenin pathway[J]. J Exp Clin Cancer Res, 2019, 38(1): 323. |
11 | Calibasi-Kocal G, Pakdemirli A, Bayrak S, et al. Curcumin effects on cell proliferation, angiogenesis and metastasis in colorectal cancer[J]. J BUON, 2019, 24(4): 1482-1487. |
12 | Kumar A, Harsha C, Parama D, et al. Current clinical developments in curcumin-based therapeutics for cancer and chronic diseases[J]. Phytother Res, 2021, 35(12): 6768-6801. |
13 | Hatamipour M, Ramezani M, Tabassi SAS, et al. Demethoxycurcumin: a naturally occurring curcu-min analogue with antitumor properties[J]. J Cell Physiol, 2018, 233(12): 9247-9260. |
14 | Morshedi K, Borran S, Ebrahimi MS, et al. Therapeutic effect of curcumin in gastrointestinal cancers: a comprehensive review[J]. Phytother Res, 2021, 35(9): 4834-4897. |
15 | Mirzaei H, Shakeri A, Rashidi B, et al. Phytosomal curcumin: a review of pharmacokinetic, experimental and clinical studies[J]. Biomed Pharm, 2017, 85: 102-112. |
16 | Aqil F, Munagala R, Jeyabalan J, et al. Exosomes for the enhanced tissue bioavailability and efficacy of curcumin[J]. AAPS J, 2017, 19(6): 1691-1702. |
17 | Crommelin DJA, van Hoogevest P, Storm G. The role of liposomes in clinical nanomedicine development. What now? Now what[J]. J Control Release, 2020, 318: 256-263. |
18 | He HS, Lu Y, Qi JP, et al. Adapting liposomes for oral drug delivery[J]. Acta Pharm Sin B, 2019, 9(1): 36-48. |
19 | Shao XR, Wei XQ, Zhang S, et al. Effects of micro-environmental pH of liposome on chemical stability of loaded drug[J]. Nanoscale Res Lett, 2017, 12(1): 504. |
20 | Jiang LM, Ayre WN, Melling GE, et al. Liposomes loaded with transforming growth factor β1 promote odontogenic differentiation of dental pulp stem cells[J]. J Dent, 2020, 103: 103501. |
21 | Feng T, Wei YM, Lee RJ, et al. Liposomal curcumin and its application in cancer[J]. Int J Nanomedicine, 2017, 12: 6027-6044. |
22 | La Barbera G, Capriotti AL, Caracciolo G, et al. A comprehensive analysis of liposomal biomolecular corona upon human plasma incubation: the evolution towards the lipid corona[J]. Talanta, 2020, 209: 120487. |
23 | Heger Z, Polanska H, Merlos Rodrigo MA, et al. Prostate tumor attenuation in the nu/nu murine mo-del due to anti-sarcosine antibodies in folate-targeted liposomes[J]. Sci Rep, 2016, 6: 33379. |
24 | Hewlings S, Kalman D. Curcumin: a review of its effects on human health[J]. Foods, 2017, 6(10): 92. |
25 | 任玉国, 张凤梅, 王敏, 等. 联氨基姜黄素脂质体纳米颗粒对乳腺癌细胞增殖、凋亡、侵袭和迁移的影响[J]. 现代肿瘤医学, 2016, 24(1): 16-18. |
Ren YG, Zhang FM, Wang M, et al. Curcumin affects-hydrazino liposomal nanoparticles on breast cancer cell proliferation, apoptosis, invasion and migration[J]. J Mod Oncol, 2016, 24(1): 16-18. | |
26 | Zhao M, Zhao MN, Fu C, et al. Targeted therapy of intracranial glioma model mice with curcumin nanoliposomes[J]. Int J Nanomedicine, 2018, 13: 1601-1610. |
27 | Xu HZ, Gong Z, Zhou SY, et al. Liposomal curcu-min targeting endometrial cancer through the NF‑κB pathway[J]. Cell Physiol Biochem, 2018, 48(2): 569-582. |
28 | AlSawaftah NM, Awad NS, Paul V, et al. Transferrin-modified liposomes triggered with ultrasound to treat HeLa cells[J]. Sci Rep, 2021, 11(1): 11589. |
29 | Kawabata H. Transferrin and transferrin receptors update[J]. Free Radic Biol Med, 2019, 133: 46-54. |
30 | Shen Y, Li X, Dong DD, et al. Transferrin receptor 1 in cancer: a new sight for cancer therapy[J]. Am J Cancer Res, 2018, 8(6): 916-931. |
31 | Shirakihara T, Yamaguchi H, Kondo T, et al. Transferrin receptor 1 promotes the fibroblast growth factor receptor-mediated oncogenic potential of diffused-type gastric cancer[J]. Oncogene, 2022, 41(18): 2587-2596. |
32 | Candelaria PV, Leoh LS, Penichet ML, et al. Antibodies targeting the transferrin receptor 1 (TfR1) as direct anti-cancer agents[J]. Front Immunol, 2021, 12: 607692. |
33 | Wang KK, Yuan AH, Yu JQ, et al. One-step self-assembling method to prepare dual-functional transferrin nanoparticles for antitumor drug delivery[J]. J Pharm Sci, 2016, 105(3): 1269-1276. |
34 | Choudhury H, Pandey M, Chin PX, et al. Transferrin receptors-targeting nanocarriers for efficient targeted delivery and transcytosis of drugs into the brain tumors: a review of recent advancements and emerging trends[J]. Drug Deliv Transl Res, 2018, 8(5): 1545-1563. |
35 | Wang YY, Yang YN, Yu YB, et al. Transferrin modified dioscin loaded PEGylated liposomes: characteri-zation and in vitro antitumor effect[J]. J Nanosci Nanotechnol, 2020, 20(3): 1321-1331. |
36 | Zhao XL, Yang YF, Su XR, et al. Transferrin-modified triptolide liposome targeting enhances anti-hepatocellular carcinoma effects[J]. Biomedicines, 2023, 11(10): 2869. |
37 | Deshpande P, Jhaveri A, Pattni B, et al. Transferrin and octaarginine modified dual-functional liposomes with improved cancer cell targeting and enhanced intracellular delivery for the treatment of ovarian cancer[J]. Drug Deliv, 2018, 25(1): 517-532. |
38 | Wei XQ, Zhu JF, Wang XB, et al. Improving the stability of liposomal curcumin by adjusting the inner aqueous chamber pH of liposomes[J]. ACS Omega, 2020, 5(2): 1120-1126. |
39 | Kong L, Li XT, Ni YN, et al. Transferrin-modified osthole PEGylated liposomes travel the blood-brain barrier and mitigate Alzheimer’s disease-related pathology in APP/PS-1 mice[J]. Int J Nanomedicine, 2020, 15: 2841-2858. |
40 | Andrade S, Pereira MC, Loureiro JA. Caffeic acid loaded into engineered lipid nanoparticles for Alzheimer’s disease therapy[J]. Colloids Surf B Biointerfaces, 2023, 225: 113270. |
41 | Peng Q, Wei XQ, Yang Q, et al. Enhanced biostability of nanoparticle-based drug delivery systems by albumin corona[J]. Nanomedicine (Lond), 2015, 10(2): 205-214. |
42 | Sambrook J, Russell DW. Molecular cloning: a laboratory manual[M]. 3rd ed. New York: Cold Spring Harbor Laboratory Press, 2001. |
43 | 赵茜茜, 王英豪, 肖志勇, 等. 姜黄素-胡椒碱共载脂质体的制备及其体外抗肿瘤活性评价[J]. 中国医药工业杂志, 2023, 54(2): 230-236. |
Zhao QQ, Wang YH, Xiao ZY, et al. Preparation and evaluation of in vitro antitumor activity of curcumin and piperine co-loaded liposomes[J]. Chin J Pharm, 2023, 54(2): 230-236. | |
44 | 尹芳, 王帅, 郝越, 等. 姜黄素的药理学作用及其机制的研究进展[J]. 河北联合大学学报(医学版), 2013, 15(6): 798-799. |
Yin F, Wang S, Hao Y, et al. Research progress on pharmacological action and mechanism of curcumin[J]. J Hebei Unit Univers (Health Sci), 2013, 15(6): 798-799. | |
45 | 刘颖慧. 姜黄素脂质体的制备及其体内外抗菌活性的研究[D]. 沈阳: 沈阳农业大学, 2020. |
Liu YH. Preparation of curcumin liposomes and stu-dy of its antibacterial activity in vivo and in vitro [D]. Shenyang: Shenyang Agricultural University, 2020. | |
46 | Peng Q, Zhang ZR, Gong T, et al. A rapid-acting, long-acting insulin formulation based on a phospholipid complex loaded PHBHHx nanoparticles[J]. Biomaterials, 2012, 33(5): 1583-1588. |
47 | Mary SJ, Veeravarmal V, Tharmasahayam IJ, et al. In vitro evaluation of cytotoxic effects of methanolic leaf extracts of Annona muricata on oral squamous cell carcinoma-15 cell lines and its effect on expression of Bcl 2-associated X protein, B-cell C/lymphoma 2 and p53 genes[J]. Contemp Clin Dent, 2023, 14(3): 227-231. |
48 | Li M, Sun D, Song N, et al. Mutant p53 in head and neck squamous cell carcinoma: molecular mechanism of gain-of-function and targeting therapy (review)[J]. Oncol Rep, 2023, 50(3): 162. |
49 | Malhotra L, Sharma S, Hariprasad G, et al. Mechanism of apoptosis activation by Curcumin rescued mutant p53Y220C in human pancreatic cancer[J]. Biochim Biophys Acta Mol Cell Res, 2022, 1869(12): 119343. |
[1] | 古丽其合热·阿布来提,秦旭,朱光勋. 线粒体自噬在牙周炎发生发展过程中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 68-73. |
[2] | 陈秀春, 张志民, 洪丽华, 张雅琪, 郑鹏, 李文月. 双甲基丙烯酸二缩三乙二醇酯细胞毒性的研究进展[J]. 国际口腔医学杂志, 2018, 45(2): 209-213. |
[3] | 朱玉婷 刘江峰 李晓星 杨会肖 黄江勇 于淼 陈秉勋 李艳利. 脂多糖上调人牙髓细胞B细胞淋巴瘤-2蛋白及其相关X蛋白的表达[J]. 国际口腔医学杂志, 2015, 42(4): 391-394. |
[4] | 蔡洁明综述 王茜审校. 脂质体在医学中应用的新进展[J]. 国际口腔医学杂志, 2009, 36(6): 698-700. |
[5] | 严超然,李龙江. 肿瘤靶向药物载体系统的研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): -. |
[6] | 刘昌勇1,李正1,李小玉2,刘豫蓉2,胡火珍1. 乙肝病毒X 蛋白诱导细胞凋亡的研究[J]. 国际口腔医学杂志, 2008, 35(5): 491-491~493,605. |
[7] | 张迪亚, 李盛来综述 陈莉丽审校. 伴放线放线杆菌与牙周病相关细胞凋亡关系的研究[J]. 国际口腔医学杂志, 2007, 34(02): 94-96. |
[8] | 律娜,夏娟,程斌,. 粘着斑激酶与口腔肿瘤的发生发展[J]. 国际口腔医学杂志, 2006, 33(05): 393-395. |
[9] | 许艳华,徐芸,罗颂椒. 细胞凋亡在颞下颌关节中的研究进展[J]. 国际口腔医学杂志, 2005, 32(03): 181-183. |
[10] | 王晓峰,陈英新,高文信. p33/ING1及其与口腔鳞癌的关系[J]. 国际口腔医学杂志, 2005, 32(03): 212-213. |
[11] | 孙红英,周国民. 核转录因子-κB与口腔扁平苔藓[J]. 国际口腔医学杂志, 2005, 32(02): 104-106. |
[12] | 廖明庭,张志光. 软骨细胞凋亡及其对颞下颌关节的生理、病理作用[J]. 国际口腔医学杂志, 2004, 31(01): 33-35. |
[13] | 许国雄,陈伟良. 环氧合酶-2及其抑制剂与头颈肿瘤的关系[J]. 国际口腔医学杂志, 2004, 31(01): 23-25. |
[14] | 江凌勇 赵志河. 细胞凋亡与正畸牙移动骨改建[J]. 国际口腔医学杂志, 2003, 30(06): 447-449. |
[15] | 莫珩 高文信. 核转录因子NF-κB与口腔鳞癌关系的研究进展[J]. 国际口腔医学杂志, 2003, 30(04): 272-274. |
|